
1

Voluntary Framework for Enhancing
Update Process Security
Technical Capabilities and Patching Expectations Working Group
Working Group Membership: …
Draft: September 12, 2017

Motivation
The proliferation of devices and growth in the Internet of Things (IoT) provides the opportunity
for technical advances that could dramatically improve people’s lives. As devices become
increasingly integrated into society, security and safety risks to individuals, businesses, and
society may increase without appropriate, risk-based security measures. One important tool to
help mitigate risks is the ability to reliably update software within devices remotely, through a
network (often referred to as “over-the-air”, or OTA).
The level of update process security appropriate for a particular device will vary depending upon
the manufacturer’s unique business needs, resource availability, and risk tolerance. Executing
a basic, over-the-air update can be done without including any enhanced update process
security features, however such an update may be vulnerable to blocking, spoofing, or other
malicious attack. Absent any security precautions, updates can, in fact, dramatically reduce the
security of a device. Decisions concerning whether to employ additional features to enhance the
security of the update process should be risk-based, achieving security goals in a cost-effective
and prioritized manner.

The term “updatable” does not mean the same thing to everyone. Different people and different
organizations may have their own ideas about what the term does (and should) mean. To
better address update process security risks, it is important to have a common understanding of
updatability to support manufacturers, purchasers, and other IoT stakeholders as they make
risk-based decisions to enhance update process security.

Document Overview
Accordingly, this document is designed to support manufacturers in identifying and selecting
appropriate, risk-based security features to mitigate vulnerabilities in the update process. Part I
of this document provides an overview of basic steps in an illustrative update process. Part II
provides a menu of voluntary processes that manufacturers may choose to adopt to enhance
the level of security in the update process depending upon individual business needs and risk
tolerance.

Of note, update process security is only one aspect of many in enhancing the overall security of
an IoT device. Devices may have vulnerabilities never addressed by an update. There are also
physical and human security vulnerabilities that may not be addressable by software updates.

2

This larger challenge of mitigating IoT device vulnerabilities can only be addressed through a
set of coordinated actions, including industry best practices, device management and cyber-
hygiene solutions, and greater awareness of context-specific risks. Adoption of the highest level
of over-the-air update process security enhancements does not guarantee the security of the
device itself. This voluntary guidance, therefore, is intended only for the limited purpose of
developing a common lexicon to support manufacturers in enhancing security in effecting over-
the-air updates.

Audience
This document is intended to provide IoT device and software manufacturers with a common
lexicon or language to discuss risk mitigation in the over-the-air update process. A clear
framework for updatability, with defined steps, will allow discerning risk-aware decision makers
to understand the value of particular security features. Manufacturers1 of devices and the
components that go into devices have many reasons to be interested in their devices’ update
process. Further value results from a shared model of update processes across the diverse
IoT product space. Even if the devices are quite different, the steps of the update and the
potential security features may be similar.

Manufacturers can ensure that the devices they design, produce, and sell perform properly and
address security risks. To achieve these goals, manufacturers need detailed hardware and
software design criteria that they can integrate throughout their product development,
production, sales, and support processes. Note that the information in this document is not
explicitly targeted to end-consumers. Manufacturers may wish to consult “Communicating IoT
Device Security Update Capability to Improve Transparency for Consumers” by the Working
Group on Communicating Upgradability for guidance on how to communicate updatability to
end-consumers. This document also does not address security risks from legacy devices or
orphan devices that are no longer maintained.

The information in this document may also be useful to enterprise-level procurement processes.
Having knowledge of the importance of security updates and the risks associated with certain
technologies can better guide decision-making.

1 The term “Manufacturer” used throughout this document is understood to also represent an
“assigned agent”; “service provider”; or “vendor” as authorized and enabled by the
Manufacturer.

https://www.ntia.doc.gov/iotsecurity
https://www.ntia.doc.gov/iotsecurity

3

Part I: Basic Steps in an Illustrative Over-the-Air
Update Process
The update process is broken up into a linear sequence of steps that broadly describes the
sequence to be followed.
For each step, there are security features which can vary greatly depending upon the intended
final security posture desired by the manufacturer.
While the sequence of steps is common to all risk models, the security features implemented in
each step ultimately determines the level of security of the update process.
The following normative sequence of update steps are considered the basic elements in the
update process..

0. Create: Manufacturer creates image
1. This step is assumed to be out of scope for this guideline, but is represented

here as it is seminal to the initialization of this process.
2. The update image or multiple update images are packaged into a deliverable

structure.2
1. Sign: Ensure integrity of update

1. Manufacturer includes a signature or signatures in the update deliverable, to be
used to vet the integrity of the update deliverable contents.

2. Protect: Prevent exposure of update deliverable
1. Manufacturer subjects the update deliverable to a translation (including

encryption or obfuscation) to prevent exposure of software image
3. Send: Data in motion

1. The update deliverable is communicated to the target system / device.3
4. Receive: Receive update deliverable

1. The target system / device receives update deliverable
5. Check: Process update deliverable

1. Target system / device validates integrity of (potentially encrypted) update
deliverable

2. Target system / device decrypts update deliverable (if encrypted)
3. Target system performs any special handling of update images as indicated

6. Announce: User awareness of update on device 4

2 This step still has important security concerns. Recent attacks on the update process have
demonstrated the importance of the integrity and security of the update process. One
stakeholder recommended the trust in the update process not rest on a single key or servers,
and that at least one key required for an update to be trusted should be kept on a non-Internet
connected device.
3 Steps should be taken to ensure that the appropriate code is sent to the appropriate device. This is
outside the scope of this document.

4

1. End user notification and/or approval of update installation
7. Distribute: Distribution

1. Update deliverable is parsed and distributed to intended target devices
2. Distribution may be of a recursive nature.

8. Process: Process update image
1. Each target (CPU, MCU, FPGA, etc.) receives its update image
2. Each target decrypts the update image (if encrypted)
3. Each target validates the integrity of the plain text update image

9. Stage: System pre-update state
1. Any activities that need to be performed before the update occurs
2. Potentially initiate a backout state for recovery, in case the update fails

10. Apply: Trigger update process
1. Perform the actual update process of installing the update image

11. Re-verify: Post-update verification
1. Each target validates the integrity of the installed update
2. Communicate results of verification to relevant targets

12. Activate: Activate / enable updated code
1. New updated code actually begins to be executed on the target (assuming

successful verification)
13. Clean-up: Post-update activities

1. Verify that system is functioning appropriately
2. Post-processing messaging (internal & external) and cleanup from update
3. This could include a negative outcome.

Part II: Security Features to Enhance Over-the-Air
Update Process Security
The steps listed above are necessary to ensure the integrity and the reliability of an update and the
update process. However, without the addition of security specific features at each step, the steps
themselves are vulnerable to attack by malicious actors and may in fact make the target device more
vulnerable with an update process than without one.5 The security needs of each step vary based on
context, threat, etc.

Below, we present a framework to understand security features that could be implemented at each step
to improve the security of an update process. The features themselves map to the steps of an update.
Because the security decisions should be based on needs, context, technical capabilities, and risk
evaluation, the security features are presented as a ‘menu,’ from basic security features, all the way to

4 If the update is automatic, without requiring user involvement, then this step may happen later, if just to
allow the user to understand that the current software and firmware is up-to-date. Alternatively, it may
occur earlier to give the user notice and choice about downloading the update code.
5 Such attacks include (but are not limited to): Man in the Middle, Spoofing, ‘Bricking’ the device, Denial of
Service (blocking the update), Version Downgrade, and Key theft./

5

features designed to resist quantum computing-assisted attacks in line with current state-of-the-art
encryption guidance.

Sign: Ensure authenticity and integrity of update

Risks: If there is no authenticity and integrity check, there is no way of verifying what you got is what
you were supposed to get, or that it originated from the expected source. Perhaps the largest risk of an
update process is the potential for a third party to push malicious code onto the device. Changing the
code on the device could lead to any number of deviations from the intended functionality including
preventing expected operations, adding new, undesired functions, changing how data flows from the
machine, or weaponizing the device to attack other targets.

Mitigations: Signing the update payload cryptographically protects the integrity of the payload, including
from undetected intentional modification by a bad actor. It also provides authenticity in the provenance
of the payload. This is different from a more traditional approach of using non-cryptographic hash such
as a cyclic redundancy check (CRC) or a checksum. These non-cryptographic hashes can validate the
integrity against naturally occurring corruption of the payload, but can be easily subverted by bad
actors. Similarly, failure to use a strong enough cryptographic signature or hash function also fails to
completely mitigate these risks. For older, weaker hash functions, an attacker with sufficient motivation
and resources could generate a malicious update that generated the same hash as the legitimate
update.

Basic Implementation: Cryptographic signatures are used to detect modification and establish
provenance of the update payload. Per NIST SP 800-131A, acceptable key lengths for signing are 2048-
bit for RSA and 224 for ECDSA, and acceptable hash functions are the SHA-2 family.6 Other, less
computationally intensive, algorithms exist (e.g. hashing functions like MD5, SHA-1, etc.) but have been
found to be susceptible to various forms of attack. NIST SP 800-89 (Recommendation for Obtaining
Assurances for Digital Signature Applications) provides recommendations on digital signature key
management.

Protect: Prevent exposure of update deliverable

Risks: This step refers to improving the protection of an update’s confidentiality or intellectual
property by encrypting it, rather than sending it ‘in the clear.’ (Note that protecting confidentiality
through encryption is not the same thing as protecting integrity through cryptographic hashes
and signatures.) An update sent without encryption risks exposure of code contained in the
device or update payload. This could allow an attacker to subvert other protections in the device
through reverse engineering thus allowing all similar devices in the field to become exploited for
botnets. In a business risk to the manufacturer, a competitor could extract valuable algorithms
or techniques in the software.

6 http://dx.doi.org/10.6028/NIST.SP.800-131Ar1

http://dx.doi.org/10.6028/NIST.SP.800-131Ar1

6

Mitigation: Encryption of the update before transmission and decryption of the update on the
device can reduce the risk of exposure during transmission regardless of the communications
path(s) of the update deliverable.

Basic Implementation: Application layer encryption is used to protect the confidentiality of the
update from time/place of creation to time/place of use. [TODO: cite standards]

Further security concerns:
Once the update deliverable has been received by the device, device design mitigations should
be considered to avoid exposing the decrypted update deliverable in the event of a physical
attack on the device during the update process.

Optionally, additional encryption provided by the communication path(s) can also be
implemented as a secondary level of encryption to further mitigate the risk of exposure while the
encrypted update deliverable is being distributed to the device. Note that communications path
encryption only prevents exposure over the communications path. Any intermediate holding
locations may result in exposure of the information (See data in motion section).

Send: Data in motion

While an update payload is being transmitted to a device, the path of communications may take several
radically different types of communications (i.e. ethernet; cellular baseband; Wi-Fi; Bluetooth; etc.),
many with no inherent security or integrity checking of the update payload. Identifying communicating
parties is often part of establishing a secure communication channel so that senders and receivers know
who with whom they are communicating.

Risks: The risks at this step are captured in the two preceding steps: compromise of the integrity of the
update and the confidentiality of the update. Transport layer authentication and encryption allow an
extra layer of defense. [authentication]

Basic implementation: Transport-layer encryption, such as TLS or BLE 4.2+, can provide widely-accepted
levels of security between the endpoints. Using features such as pinning of certificates in TLS or user-
pairing of devices in BLE can authenticate endpoints. VPNs also offer confidentiality and integrity of data
in motion.

Further security concerns: “Defense in Depth”, where multiple security mitigations are overlaid in a
redundant manner may be desirable. Validation of the Endpoint by cryptographically confirming that the
end system/device is the correct target before delivering the update deliverable such as through using
Challenge/response mechanisms or pre-shared secrets.

7

Receive: Receive update deliverable

The device receives the update.

No design risks are specifically associated with the required step, however normal good security hygiene
practices should be followed, such as mitigations against buffer overflow

Check: Process update deliverable

For this step, the device confirms that the update is valid. This step validates the security of the
previous steps, which may include checking the identity of the device, and confirming that the
update is appropriate for this device. The target system also performs any necessary special
handling of update images. This is a critical step in the protection of the device itself, where ultimately
each device needs to protect itself from a potentially malicious update payload and all previous
mitigations are enforced during this step.

Risks: In addition to the concerns above about authenticity and integrity (signature) and confidentiality
(encryption), there are a number of security and performance concerns. In a ‘downgrade attack’, an
older authentic update payload is substituted by a bad actor to re-introduce known vulnerabilities in the
target to be exploited in a secondary attack. The update itself could be mis-configured so as to harm the
device or its functionality.

Basic implementation: In addition to the signature and encryption features above, a monotonic
versioning system can prevent a downgrade attack.

Further concerns: A system capable of disallowing previous versions requires an additional step for a
manufacturer-driven rollback update, and can make user-driven rollbacks more complex. Alternatively,
the device can securely validate the path and source of the update to ensure that the older version is
not coming from an untrustworthy source.

Announce: User awareness of update on device

The manufacturer may wish user engagement in the update process. An update process may
temporarily impede the functionality of a device, or the user may have some other interest in approving
an update beyond an automated process. In these instances, the user should be made aware of the
presence of an update on the device to take further action.

Risks: Strictly speaking this is not a security risk, but a functional risk as the process of updating the
device may interrupt intended functionality or timing of functionality resulting in a period of denial of
service.

Risks of failing to properly address the concerns of this step include:

8

1. Non-performance of device intended functionality during an update process.
2. If the device is under the control or partial control of a bad actor (e.g botnet), they may wish to

block a security update.
3. A legitimate user may wish to avoid an update that implements unwanted features.
4. The device may not be able to communicate to the appropriate user that an update is available,

leading to out-of-date, vulnerable devices.
Basic Implementation: Manufacturer should consider the use and installation of a device to determine
the optimal approach to automatic updates, user control, and uptime criticality.

Optional end user approval of update, as indicated in “Communicating IoT Device Security Update
Capability to Improve Transparency for Consumers” by the Working Group on Communicating
Upgradability.

Further security concerns: If the user does not take action to update the device, the manufacturer or
device administrator may wish to take further actions. How to address a non-updated device is outside
the scope of this document.

Distribute: Distribution to devices

This guideline allows for multiple update targets in a given device or system, as such the potential for a
hierarchical relationship between update targets is supported.

Risks: The update payload may be decrypted by the initial target and then distributed to sub-systems
without further integrity or content protection (see above). This could expose intellectual property,
more easily enabling reverse engineering, or potentially allow the code to be modified as it moves
through the systems.

Basic implementation: Update image remains encrypted while in motion if traveling across exposed
transport media; Support for multiple of layers of system / devices / CPUs to be targeted.

Further security concerns: The adversary might still be able to try to compromise non-exposed internal
communication channels. To address this residual risk, the update image should remain encrypted while
in motion.

https://www.ntia.doc.gov/iotsecurity
https://www.ntia.doc.gov/iotsecurity

9

Process: Process update image

Similar to step #5 “Check”, however this may be performed on a target in a lower “child” relationship, if
a hierarchical relationship between update targets is supported.

Basic Implementation: Each target validates the integrity of the plain text update image using a
cryptographic hash signature. Each target decrypts their specific update image, if encrypted.

Stage: System pre-update state

During this step any needed activities necessary to performing the update on the device can occur, this
is inclusive of functions such as erasing flash memory; placing the device in a ‘safe mode’ of operation;
etc.

 Risks: Decrypted update image is present in device’s memory for an extended period of time while
waiting for this step to complete.

Basic Security Features: None assumed; Manufacturer defined.

[potentially MMU-protected memory regions, seperate memory space on a different bus]

Apply: Trigger update process

The actual update process occurs. This includes writing to a file structure; updating the binary program
space in flash memory; etc.

Risks: Decrypted update image may be communicated via internal communication channels or busses
and stand the risk of being intercepted and exposed

Basic Security Implementation: No special processing is assumed

Further security concerns: Coordination between updates for synchronized updated is supported;
Coordination with end user supported; Persistent data conversion on each target is supported. Update is
placed into a separate flash region from existing image for reliability purposes (in case of failed update).

Re-verify: Post-update verification

As the importance of utilizing the intended, correct update image is paramount to the update process,
one last test of the update functionality is performed before this new update software is executed.

10

Risks: Something went wrong. (More robustness than security)

1. This redundant test of update integrity confirms that the process of writing the update image to
the intended target was performed correctly and that no malicious actor or device / memory
failure altered the intended update image.

Basic Security Implementation: Each target vets the integrity of the installed update.

 Further security concerns: Potentially use cryptographic hashing: 128 bit, or higher.

Activate: Activate / enable updated code

No additional risks are incurred during this step.

Basic Security Implementation: No special processing is assumed

Further Security Concerns: If multiple flash images are stored (redundant duplicate copies, or previous
and current), then activation may entail pointing to the new image for subsequent boot cycles.

Clean-up: Post-update activities

Following an update operation, one final step is performed to clean up any loose ends, such as
buffered data or encryption keys and intermediate values in memory. Post processing logging
and messaging may be performed to inform other device targets of the status of the update on
this target as well as communicating back to an external server the status of the update
process. This status should identify the target in question; the particular device in question; and
the status may not be a successful outcome.

Risks:

1. Other targets may not receive the status update and not act in concert with all the other
targets

2. The external server may not receive the status update and believe the target or device
has not been updated or be unaware that the target or device hasn’t been updated, if the
update operation did not succeed.

Basic Security Features: No special processing is assumed
Upgraded Security Features: Local to the target system notification of successful update by each target;
External to the target system, communications to external database of successful upgrade to system,

11

including identification and versioning information (i.e. “non-repudiation”)
Enhanced Security Features: n/a

Potential Appendix: Areas of concern that are common to multiple steps in
the update system

Key Management
This requires Ephemeral and unique cryptographic keys are created / exchanged and stored in the
system/device.

A determined attacker could still subvert this protection by accessing the keys stored on the device, and
then decrypting the update. To mitigate this risk, proper key management techniques should be
followed. (See NIST SP 800-147 and SP 800-57 for handling)

The attacker may try to read the keys from the device’s memory during the decryption phase. Against
this level of attacker, the device would need secure memory in which to decrypt and store the update.

Also language about protected memory?

	Voluntary Framework for Enhancing Update Process Security
	Part I: Basic Steps in an Illustrative Over-the-Air Update Process
	Part II: Security Features to Enhance Over-the-Air Update Process Security
	Sign: Ensure authenticity and integrity of update
	Protect: Prevent exposure of update deliverable
	Send: Data in motion
	Receive: Receive update deliverable
	Check: Process update deliverable
	Announce: User awareness of update on device
	Distribute: Distribution to devices
	Process: Process update image
	Stage: System pre-update state
	Apply: Trigger update process
	Re-verify: Post-update verification
	Activate: Activate / enable updated code
	Clean-up: Post-update activities
	Potential Appendix: Areas of concern that are common to multiple steps in the update system
	Key Management

