
Framing Software Component
Transparency: Establishing a Common
Software Bill of Materials (SBOM)
Second Edition

NTIA Multistakeholder Process on Software Component Transparency
Framing Working Group
2021-10-21

Photo by Bruno van der Kraan on Unsplash

https://unsplash.com/@brunovdkraan
https://unsplash.com/s/photos/structure

Table of Contents
Foreword 4

1 Problem Statement 5

1.1 Goals 5

2 What is an SBOM? 7

2.1 SBOM Elements 8

2.2 Baseline Attributes 8

2.2.1 Author Name 9

2.2.2 Timestamp 9

2.2.3 Supplier Name 9

2.2.4 Component Name 9

2.2.5 Version String 10

2.2.6 Component Hash 10

2.2.7 Unique Identifier 10

2.2.8 Relationship 11

2.3 Undetermined Attribute Values 11

2.4 Mapping to Existing Formats 13

2.5 Component Relationships 14

2.5.1 Knowledge About Relationships 15

2.6 SBOM Examples 15

2.7 Additional Elements 19

2.7.1 Authenticity and Integrity 19

3 SBOM Processes 20

3.1 SBOM Creation: How 20

3.2 SBOM Creation: When 21

3.3 SBOM Exchange 21

Second Edition 2

3.4 Network Rules 22

3.5 Roles and Perspectives 25

3.5.1 Perspectives 25

3.5.1.1 Produce 25

3.5.1.2 Choose 25

3.5.1.3 Operate 25

3.6 SBOM Use Cases 26

3.6.1 Vulnerability Management and VEX 26

3.6.2 Intellectual Property 26

3.6.3 High Assurance 27

3.7 Tool Support 27

4 Terminology 28

4.1 SBOM 28

4.2 Component 28

4.3 Attribute 28

4.4 SBOM Entry 28

4.5 Author 29

4.6 Supplier 29

4.7 Consumer 29

5 Background 30

5.1 Overview of the NTIA Multistakeholder Process 30

5.2 Mission Statement 31

5.3 Scope 31

6 Conclusion 32

7 Changes 33

8 Acknowledgements 34

Second Edition 3

Foreword
The first version of this document was published in 2019 as part of the Phase I series of reports
from the NTIA Software Component Transparency multistakeholder process. The concept and1

implementation of SBOM is practicable today, but it will continue to evolve. This updated
document reflects the work done by the NTIA multistakeholder process since the original
publication. The update focuses on specific topics, not a comprehensive revision of the entire
document. The updates chosen for this revision were based on insights by the Framing group
since the initial report release as well as feedback from other task groups within the NTIA
Software Transparency group, and experience from implementation in the broader SBOM
community. These changes are highlighted in Section 7.

1 https://ntia.gov/files/ntia/publications/framingsbom_20191112.pdf

Second Edition 4

https://ntia.gov/files/ntia/publications/framingsbom_20191112.pdf

1 Problem Statement
Modern software systems involve increasingly complex and dynamic supply chains. Lack of
systemic visibility into the composition and functionality of these systems contributes
substantially to cybersecurity risk. It also increases costs of development, procurement, and
maintenance. In our increasingly interconnected world, risk and cost impact not only individuals
and organizations, but also collective goods like public safety and national security.

Increased supply chain transparency can reduce cybersecurity risks and overall costs by:

● Improving the ability to identify vulnerable software components that contribute to
cybersecurity incidents

● Reducing unplanned and unproductive work due to convoluted supply chains
● Allowing vendors that support transparency to more easily differentiate themselves in the

market
● Reducing duplication of effort by standardizing formats across multiple sectors
● Facilitating the identification of suspicious or counterfeit software components

Achieving software supply chain transparency can increase trust and trustworthiness while
lowering costs of our digital infrastructure. Individual pockets of people, policy, process, and
technology are solving parts of the problem, but not in a systematic and scalable way that
crosses development environments, product lines, vendors, sectors, and nations. A more
systematic and collaborative approach can help.

To address the problem of poor software supply chain transparency, the National
Telecommunications and Information Administration (NTIA) convened a multistakeholder
process. This document is an output from the Framing working group.2

1.1 Goals
To achieve greater supply chain transparency, the primary goal of the Framing working group is
to create a model for software component information that can be universally and transparently
shared across industry sectors. The model defines and describes an SBOM: a software bill of
materials. The model addresses relationships between components, the creation and sharing of
SBOMs, the roles of participants, and SBOM integration with supply chains.

To scale this model globally, it is necessary to address the difficult problem of universally
identifying and defining certain aspects of software components. So a subsidiary goal was to
select a core, baseline set of attributes necessary to identify components with sufficient relative

2 https://www.ntia.doc.gov/SoftwareTransparency

Second Edition 5

https://www.ntia.doc.gov/SoftwareTransparency

uniqueness. Another goal was to capture SBOM applications and consider what additional,
optional attributes and external elements might be needed beyond the baseline set.

Further background on this multistakeholder process and the Framing working group can be
found in Section 5.

Second Edition 6

2 What is an SBOM?
An SBOM is a formal, machine-readable inventory of software components and dependencies,
information about those components, and their hierarchical relationships. These inventories
should be comprehensive – or should explicitly state where they could not be. SBOMs may
include open source or proprietary software and can be widely available or access-restricted.

SBOMs should also include baseline attributes with the ability to uniquely identify individual
components in a standard data format. The most efficient generation of SBOMs is as a
byproduct of a modern development process. For older software, less-automated methods exist.

An SBOM is effectively a nested inventory, a list of ingredients that make up software
components. An SBOM identifies and lists software components, information about those
components, and supply chain relationships between them. The amount and type of information
included in a particular SBOM may vary depending on factors such as the industry or sector and
the needs of SBOM consumers. For this initiative, the focus will be on establishing a minimum
expectation for creating a baseline SBOM that outlines the minimum amount of information and
process required to support basic and essential features.

Defining baseline attributes (Section 2.2) and processes (Section 3) allows adoption by a variety
of stakeholders quickly, which can then be further developed over time. This is one of the major
drivers for establishing such a basic set of information as a starting point, rather than initially
requiring a more robust set of attributes that may require more time and resources to collect and
maintain. Beyond the core or minimum baseline SBOM, additional information may be needed
as further development and practice matures within different sectors. An SBOM also needs to
relate each component back to other components through the supply chains that compose
software systems. Capturing and exchanging these links between components is an important
feature of an SBOM.

Structured data formats and exchange protocols are another key characteristic of a functional
SBOM, because they enable machine-readability and automation. Large SBOM consumer
organizations will need to collate and manage large amounts of data from different suppliers, so
it is critical to allow the consumers of this data to manage this in a machine-readable format for
efficiency and expandability. Choosing a specific data format is an important part of this
functionality. The Standards and Formats working group was established, in part, to address this
issue. Without a specific data format and identification scheme, it would be nearly impossible to
identify, track, and manage components that are named in an ad hoc fashion.

SBOMs do not provide significant value as independent entities, completely isolated from other
data sources. For example, the use of SBOM in vulnerability management requires a catalog of
known vulnerabilities (e.g., Common Vulnerabilities and Exposures, CVE), associations of3

3 https://www.cve.org/

Second Edition 7

https://www.cve.org/

vulnerabilities to components (e.g., the use of Common Platform Enumeration, CPE in the U.S.4

National Vulnerability Database, NVD), and possibly a means by which to convey the5

exploitability or exposure of a vulnerability at different points along supply chains. The use of
SBOM for license management requires that licenses and their restrictions are mapped to
components.

A note about terminology in this document: Components are units of software defined
by suppliers or authors. Attributes are information about components and SBOM
entries, primarily designed to identify components. An SBOM entry identifies a
component and its associated attributes. An SBOM is a collection of one or more
SBOM entries.

Software that might commonly be called a “product” is treated as a type of
component, often considered to be the primary component and subject of the SBOM.

More terms are defined in Section 4.

2.1 SBOM Elements
The NTIA Software Component Transparency multistakeholder process reviewed existing
software identification formats, considered feedback from the Healthcare Proof of Concept
exercises, and thoroughly debated and questioned which elements would be necessary to
create a scalable and functional SBOM system. Many of the answers depend on the desired
use cases that can be built on top of sufficient quantity and quality of baseline SBOM data.
Without a way to systematically and consistently define and identify software components and
their relationships, none of the desired use cases will function at scale. Section 2 proposes and
describes the minimum elements and baseline attributes (Section 2.2) needed for any SBOM
use cases.

2.2 Baseline Attributes
The primary purpose of an SBOM is to uniquely and unambiguously identify software
components and their relationships to one another. Therefore, one necessary element of an
SBOM system is a set of baseline attributes that can be used to identify components and their
relationships. An SBOM system for format that follows the guidance and framing proposed in
this document must support these baseline attributes. An SBOM system or format may support
additional attributes. There are also cases where certain attributes may not be available or
applicable or may not materially contribute to component identification (see Section 2.3).

5 https://nvd.nist.gov

4 https://nvd.nist.gov/products/cpe

Second Edition 8

https://nvd.nist.gov/
https://nvd.nist.gov/products/cpe

The Author Name and Timestamp attributes provide meta-information about an SBOM; the
remaining attributes apply to components. See Software Identification Challenges and Guidance
for a more detailed examination of component and supplier identification. A subset of these6

attributes (except component hash) are listed as necessary Data Field elements in The
Minimum Elements For a Software Bill of Materials (SBOM).7

2.2.1 Author Name
author of the SBOM

The author may not always be the supplier, which indicates that the SBOM was not created by
the supplier.

2.2.2 Timestamp
date and time when the SBOM was last updated

Timestamp should be updated when an SBOM entry is changed, which includes initial creation.
Timestamp should be consistent across time zones and locales and use a common international
format, such as ISO 8601.8

2.2.3 Supplier Name
name or other identifier of the supplier of a component in an SBOM entry

Supplier Name should include some capability to handle multiple names or aliases. When the
author and supplier are the same, the supplier created an SBOM for their own component.
When the author and supplier are different, the author is making claims or assertions about a
component for which the author is not the supplier. Supplier identification is not further specified
in this document, but may be a significant contributor to achieving component identification at
scale.9

2.2.4 Component Name
name or other identifier of a component

Component Name should include some capability to handle multiple names or aliases.
Suppliers (or authors) define components and their names.

9 See Section 5 of https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf

8 https://www.iso.org/iso-8601-date-and-time-format.html

7 https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

6 https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf

Second Edition 9

https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf

Component names can convey supplier names. Component (and Supplier) Names can also be
conveyed using a generic namespace:name construct. One consideration is to use the
Supplier Name as the namespace designator.

2.2.5 Version String
version of a component

Version information helps to further identify a component. Suppliers and Authors are free to
choose a versioning scheme; one suggestion is Semantic Versioning.10

If a component does not initially have a version string, authors should create one.

2.2.6 Component Hash
cryptographic hash of a component

A cryptographic hash is an intrinsic identifier for a software component. Digital signatures can11

be used in place of hashes and provide stronger integrity and authenticity, but add complexities
including key management and signature verification. In addition to hash values, it must be clear
to SBOM consumers as to how the hash was generated so that it can be reproduced. For
example, the Software Package Data Exchange (SPDX) format specifies a Package Verification
Code that creates a hash of hashes for individual file components. SBOM formats are12

responsible for specifying how to produce hashes.

It is possible, and may be beneficial, to provide multiple hashes for a component or collections
of components. Suppliers and authors choose how to define components, which in turn defines
the scope of the hash. For example, an SBOM could include a hash for a source component, a
hash for the compiled binary form of that component, and a hash for a collection of components.

As noted previously, Component Hash is a recommended, but not required, Data Field element
in The Minimum Elements For a Software Bill of Materials (SBOM).13

2.2.7 Unique Identifier
additional information to help uniquely define a component

A unique identifier can be generated relative to some globally unique hierarchy or namespace or
reference an existing global coordinate system. Some systems that could be used as unique

13 https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

12 https://spdx.org/spdx-specification-21-web-version#h.2p2csry

11 https://hal.archives-ouvertes.fr/hal-01865790/file/main.pdf

10 https://semver.org

Second Edition 10

https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://spdx.org/spdx-specification-21-web-version#h.2p2csry
https://hal.archives-ouvertes.fr/hal-01865790/file/main.pdf
https://semver.org/

identifiers include Common Platform Enumeration (CPE), Package URL (PURL), Universal14 15

Unique Identifier (UUID) (also known as Globally Unique Identifier [GUID]), and Software16

Heritage ID (SWHID). Component Hash (Section 2.2.6) may effectively function as a Unique17

Identifier.

2.2.8 Relationship
association between SBOM components

The relationship between components is inherent in the design of the SBOM model. The default
relationship type is includes. This represents the inclusion of or dependency on a separate
upstream component. To simplify presentation, this document reverses the direction of the
relationship to included in. The choice of direction is not important to the model, as long as one
direction is chosen and used consistently. Using the example from Section 2.6, the following
statements are equivalent:

1. Acme Application v1.1 includes Bob’s Browser 2.1.
2. Bob’s Browser v2.1 is included in Acme Application v1.1.

A relationship type of primary is used when a component has no upstream dependencies
identified in the SBOM. The primary component defines the subject of the SBOM (e.g., Acme
Application in Table 2), including cases where the SBOM only includes one component (e.g.,
Carol’s Compression Engine in Table 3).

Other types of relationships are discussed briefly in Section 2.5.The relationship attribute also
allows an SBOM author to express their knowledge of additional upstream relationships and
SBOM information, see Section 2.5.1 for more information.

2.3 Undetermined Attribute Values
There are cases where certain attributes may not be available, may not make sense, or may not
materially contribute to component identification. One significant contributing factor is the lack of
first-hand knowledge about the composition of components. When the author of the SBOM is
not the supplier of the software component, the author may lack information or visibility
necessary to generate some attributes. Another factor is the point in time at which the SBOM
(and the component) are created, roughly: pre-build, at build or packaging time, and post-build.
For example, binary software composition analysis performed post-build by a (non-supplier)
author may detect a component but not extract the binary component to generate a hash.

17 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

16 https://en.wikipedia.org/wiki/Universally_unique_identifier

15 https://github.com/package-url/purl-spec

14 https://nvd.nist.gov/products/cpe

Second Edition 11

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://github.com/package-url/purl-spec
https://nvd.nist.gov/products/cpe

SBOMs must gracefully handle cases of missing or non-applicable attributes. A basic
recommendation is to always provide all of the baseline attributes but explicitly define values
that differentiate between “no assertion” (i.e., data is missing), and “no value” (i.e., the attribute
is not applicable for this specific SBOM). Alternatively, an SBOM format can permit missing
baseline attributes and treat them as default values (i.e., “no assertion” or “no value”).

Second Edition 12

2.4 Mapping to Existing Formats
Table 1 (recreated from Table 1 in Survey of Existing SBOM Formats) maps baseline attributes18

across SPDX, CycloneDX, and SWID. More formats and their mappings are described later in
the Survey document. In addition to the baseline attributes, authors should conform to the
specifications of their chosen SBOM formats.

Attribute SPDX CycloneDX SWID

Author Name (2.8) Creator: metadata/authors/a
uthor

<Entity> @role
(tagCreator), @name

Timestamp (2.9) Created: metadata/timestamp <Meta>

Supplier
Name

(3.5)
PackageSupplier:

Supplier
publisher

<Entity> @role
(softwareCreator/publishe
r), @name

Component
Name

(3.1)
PackageName:

name <softwareIdentity> @name

Version
String

(3.3)
PackageVersion:

version <softwareIdentity>
@version

Component
Hash

(3.10)
PackageChecksum:
(3.9)
PackageVerificat
ionCode:

Hash
“alg”

<Payload>/../<File>
@[hash-algorithm]:hash

Unique
Identifier

(2.5)SPDX
Document
Namespace
(3.2) SPDXID:

bom/serialNumber
component/bom-ref

<softwareIdentity> @tagID

Relationship (7.1)
Relationship:
DESCRIBES
CONTAINS

(Inherent in
nested
assembly/subassemb
ly and/or
dependency graphs)

<Link> @rel, @href

Table 1: Mapping baseline component information to existing formats

18 https://www.ntia.gov/SBOM

Second Edition 13

https://www.ntia.gov/SBOM

2.5 Component Relationships
An initial step in developing an SBOM is to enumerate first-level components that a supplier
directly includes in the primary component. However, in order to scale effectively, an SBOM
needs to capture nested supply chain relationships between components, to the extent that
these relationships are known. Bills of materials for physical components often describe these
relationships as a “Multi-level BOM.”19

While an SBOM may support many types of relationships, the baseline Relationship attribute
described in Section 2.2.8 defines a single type of relationship: includes (or included in). An
upstream component (often called a dependency) is included in a downstream or component. In
Figure 1, Bingo Buffer is an upstream dependency of Acme Application, Bingo is an upstream
supplier to Acme.

Other types of relationships may be necessary or useful, and existing SBOM formats support
different types of relationships. It is possible to further refine the included in relationship, for
example, conveying the difference between

● directly including, unchanged, an upstream binary component;
● including an upstream source code component, unchanged, by linking or compiling; and
● selecting an upstream source code component, modifying (forking) it, then including it by

linking or compiling.

Modifying a component effectively creates a new component (e.g., a fork) and the modifier
becomes the supplier for that new component. It is important in this example to maintain the
heritage of the modified component and convey that it has been modified. For example, SPDX
supports GENERATED_FROM and DESCENDANT_OF relationship types.20

While upstream components are typically included to provide functionality, it is common for parts
of the component to not be used. A software program (component) might include a library
(component), but only call some of the functions provided by the library. Or, certain features of a
component may be disabled during build or packaging. This becomes important in some SBOM
use cases, particularly vulnerability management. If a vulnerability affects an upstream
component, the vulnerability may or may not affect downstream components. Vulnerability21

Exploitability eXchange (VEX) is designed to convey the status of vulnerabilities in components.
22

Component relationships are illustrated in Section 2.6.

22 https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

21 https://www.ntia.doc.gov/files/ntia/publications/wysopal_swct_kickoff_perspective.pdf

20 https://spdx.github.io/spdx-spec/7-relationships-between-SPDX-elements/

19 https://medium.com/@openbom/openbom-fundamentals-all-about-openbom-multi-level-boms-f06f50ca7f74

Second Edition 14

https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://www.ntia.doc.gov/files/ntia/publications/wysopal_swct_kickoff_perspective.pdf
https://spdx.github.io/spdx-spec/7-relationships-between-SPDX-elements/
https://medium.com/@openbom/openbom-fundamentals-all-about-openbom-multi-level-boms-f06f50ca7f74

2.5.1 Knowledge About Relationships
Ideally, every supplier will create and provide SBOMs for their components, and all consumers
will obtain complete chains of these authoritative SBOMs. For every component, Author Name
(2.2.1) will equal Supplier Name (2.2.3), and in this ideal world, there will be perfect knowledge.
Until this state of transcendent SBOM utopia is achieved, SBOM authors may want to make
non-authoritative claims or assertions about components for which the authors are not the
suppliers. One expected case is that a supplier wants to assert their belief about upstream
components for which an authoritative SBOM does not exist.

These relationship assertions can be recorded using an additional, optional attribute. The
following four categories cover the range of an author’s knowledge about another supplier’s
components.

1. Unknown. This is the default. There is not yet any claim, knowledge, or assertion about
upstream components. Immediate upstream components are not currently known and
therefore not yet listed, or there may not be any upstream components. This default
value implies the open-world ontological assumption.23

2. None. There are no immediate upstream relationships. As defined by the supplier, the
component has no upstream components.

3. Partial. There is at least one immediate upstream relationship and may or may not be
others. Known relationships are listed.

4. Known. The complete set of immediate upstream relationships is known and listed.

Relationship assertions apply to a component and describe its immediate upstream
relationships. Figure 2 and Table 4 add relationship assertions to the examples in Figure 1 and
Table 2.

Assertions about upstream relationships support at least two types of analysis or interpretation.
In the first, more limited, interpretation, knowledge about Acme Application v1.1 is treated as
Known, because all immediate upstream components are known. This allows a supplier or
author to convey that they have provided a comprehensive list of immediately upstream
components. In the second interpretation, Acme Application v1.1 is treated as Partial because
some of its upstream components are Partial or Unknown. While both interpretations can be
useful, it is important to recognize the limited scope of the first.

2.6 SBOM Examples
To further illustrate the relationships described in the previous section, consider these SBOM
examples. Figure 1 and Table 2 show two different approaches to viewing SBOM information

23 https://en.wikipedia.org/wiki/Open-world_assumption

Second Edition 15

https://en.wikipedia.org/wiki/Open-world_assumption

and relationships. These are conceptual representations and not specific formats like SPDX,
CycloneDX, or SWID.

In Figure 1 and Table 2, the SBOM authored by Acme for the component named “Acme
Application” has four components. One of these, the primary component, is the Acme
Application, which defines the subject of the SBOM. Acme makes a component named
“Application” that uses two upstream components, Bob’s Browser and Bingo Buffer. In this
example, Acme was able to obtain SBOM information from Bob about Bob’s Browser, which, in
turn, uses Carol’s Compression Engine and possibly other upstream components. Acme was
not able to obtain SBOMs from Carol or Bingo, so Acme authored SBOMs for those
components. Carol’s Compression Engine does not include upstream components, while Bingo
Buffer may or may not have any upstream components.

Figure 1: Conceptual SBOM graph

Component Name Supplier Version Author Hash UID Relationship

Application Acme 1.1 Acme 0x123 234 Primary

|--- Browser Bob 2.1 Bob 0x223 334 Included in

|--- |--- Compression
|--- |--- Engine

Carol 3.1 Acme 0x323 434 Included in

|--- Buffer Bingo 2.2 Acme 0x423 534 Included in

Table 2: Conceptual SBOM table24

24 In all similar tables, the Timestamp attribute is omitted and other attribute names shortened for presentation
purposes.

Second Edition 16

In the simplest case, a single component is created entirely from scratch with no dependencies:
Carol’s Compression Engine v3.1. The SBOM for this component consists of only one entry that
defines both the component and the SBOM using the relationship type of “primary.” This
example is shown in Table 3.

Component Name Supplier
Name

Version
String

Author Hash UID Relationship Relationship
Assertion

Compression Engine Carol 3.1 Carol 0x323 434 Primary None

Table 3: Conceptual SBOM table for a single (and primary) component

Second Edition 17

In Figure 2 and Table 4, the SBOM authored by Acme for the component “Acme Application”
also has four components, and the relationship information is now enhanced with assertions
regarding completeness.

Figure 2: Conceptual SBOM graph with upstream relationship assertions

Component Name Supplier
Name

Version
String

Author Hash UID Relationship Relationship
Assertion

Application Acme 1.1 Acme 0x123 234 Primary Known

|--- Browser Bob 2.1 Bob 0x223 334 Included in Partial

|--- |--- Compression
|--- |--- Engine

Carol 3.1 Acme 0x323 434 Included in None

|--- Buffer Bingo 2.2 Acme 0x423 534 Included in Unknown

Table 4: Conceptual SBOM table with upstream relationship assertions

Acme Application (the subject and Primary component of this SBOM) asserts Known since all
immediate upstream dependencies are covered. Bob’s Browser asserts Partial since at least
Carol’s Compression Engine is upstream of it. Carol’s Compression Engine has no upstream
components and the relationship assertion is None. Bingo Buffer is known to be an immediate
upstream dependency of Acme Application, but since nothing is known upstream of Bingo
Buffer, the relationship assertion is Unknown.

Second Edition 18

2.7 Additional Elements
In addition to baseline attributes, an SBOM likely requires additional elements and component
attributes in order to support different use cases. The specific information needed depends on
the use case, and not all additional elements or attributes will support each use case. Section
3.6 describes SBOM use cases, and some of the additional elements and attributes needed for
those use cases. Additional elements and attributes include but are not limited to:

● End-of-life or end-of-support dates for components
● The ability to indicate what technologies a component implements or supports
● Mechanisms to group components, possibly by product lines or implemented

technologies (a group could be treated as a special type of upstream component)

For example, knowing that “component X and component Y implement DNS” allows a user to
identify all DNS-related components and treat them as a collection.

2.7.1 Authenticity and Integrity
An SBOM ecosystem must support the ability to cryptographically authenticate and verify SBOM
information. In general, this means that authors must be able to digitally sign SBOMs and
consumers must be able to verify signatures. Authentication and integrity protection requires
appropriate digital signature and public key infrastructure.

Second Edition 19

3 SBOM Processes
This section describes how to create and exchange SBOM information from three stakeholder
perspectives: those who produce, choose, and operate software. These perspectives are
described in detail in Roles and Benefits for SBOM Across the Supply Chain. Three SBOM25

use cases—vulnerability management, intellectual property, and high assurance—are discussed
briefly, to illustrate SBOM as an independent data source as well as how SBOMs can be
integrated into typical business processes.

3.1 SBOM Creation: How
To create an SBOM, the supplier defines components that the supplier creates themselves,
produces baseline and any additional attributes for those components, and enumerates all
directly included components. SBOM information will ideally be generated as an integral part of
the supplier’s software build and packaging processes, which can be accomplished with
modifications to existing development tools.

Any entity creating, modifying, packaging, and delivering software or software systems is
considered a supplier, and is therefore responsible for defining components and creating
SBOMs. This includes system integrators, who are essentially considered suppliers for SBOM
purposes. An organization can also act as a supplier for internally developed components.

When SBOMs for included components are available from upstream suppliers, those SBOMs
are provided with or incorporated into the primary SBOM. Where such information is not
available, a supplier can provide “best effort” SBOMs, which will be indicated by the fact that the
author for an included component SBOM will not be the same as the supplier of the component.
Section 2.5.1 describes a way for SBOM authors to make assertions about indirectly included
upstream components for which the supplier has not provided an SBOM.

An SBOM includes attributes used to identify components and additional attributes to capture
characteristics of or information about components. Identity attributes are essential, and
additional attributes may or may not be required depending on the use case or application.

An SBOM from the component’s supplier serves as a system of record or authoritative source of
information about the component. As noted elsewhere, some information may need to be
validated with other external sources. For example, vulnerability information about a component
can sometimes be derived from the National Vulnerability Database (NVD) using the Common
Platform Enumeration (CPE).

25 https://www.ntia.gov/SBOM

Second Edition 20

https://www.ntia.gov/SBOM

3.2 SBOM Creation: When
An SBOM should be created when a new component is released. This loosely corresponds to
build, packaging, or deployment activities. The SBOM should be updated when the component
changes, including when new upstream components are added. The SBOM should also change
when new SBOM information becomes available even if the components themselves have not
changed. Changes to components are often noted as updates, upgrades, releases, and
patches. Ideally, changes to components are indicated by a change in the Version String
attribute. Maintaining current SBOM information is essential.

When changing an existing component (including patching or updating), it is possible to treat the
change itself as a separate, new component added to the existing SBOM or to create a new
component, ideally with a new version string. In the example from Table 5, Bob’s Browser v1.1
with update 37 is equivalent to Bob’s Browser v1.1.1. SBOM authors should use one method
consistently.

Timeline Additional component (A) New version string (B)

Before change Bob’s Browser v1.1 Bob’s Browser v1.1

After change Bob’s Browser v1.1
Bob’s Browser update 37

Bob’s Browser v1.1.1

Table 5: Patch or update options

3.3 SBOM Exchange
It is necessary to exchange SBOM information. The primary exchange is directly from a supplier
to a consumer through a single downstream supply chain link. As part of delivering the
component, the supplier also delivers the SBOM, or a means by which the consumer can easily
obtain the SBOM, such as a URL or other reference. This direct delivery does not preclude
aggregation or cataloging of SBOM information by suppliers, consumers, or others.

Due to the variety of different software and device ecosystems, it is unlikely that one SBOM
exchange mechanism will suffice. Some existing formats, namely SWID and SPDX, are
provided as additional files as part of a component distribution or delivery. For devices with
storage and power constraints, one option is to provide a URL to look up SBOM information on
a supplier’s website. Dynamic access to an SBOM may be a good option for such devices as
well. The Internet Engineering Task Force has developed a protocol and format for end user
discovery of SBOMs, whether they are shared on a local device or on a web site. The
specification is “format neutral,” meaning it can support SPDX, CycloneDX, SWID, and future

Second Edition 21

formats as well. Protocols such as ROLIE, OpenChain, MUD, and ATOM can be26 27 28 29 30

leveraged to exchange large amounts of information, yet have the ability to collect it on-demand
and in an efficient manner. The availability of SBOM using some of these dynamic protocols will
be a key to continued adoption of the SBOM.

3.4 Network Rules
Participants in an SBOM system include suppliers and authors creating SBOM information and
consumers receiving it, as well as providers of optional intermediary services such as
composition analysis and dependency analysis. In many cases a participant acts as both a
supplier and consumer, operating somewhere in the middle of a supply chain.

Participants follow a set of network rules so that SBOM systems function at scale. Suppliers
create SBOMs for components the suppliers develop themselves, and suppliers define these
components. For upstream components, suppliers obtain SBOMs from the appropriate
upstream suppliers. If upstream SBOMs are not available, the supplier or other authors can
create SBOMs, even when this involves making up or omitting baseline attributes.

An SBOM must list at least one primary component, which defines the subject of the SBOM. An
SBOM lists components that can be:

1. Originally created by a supplier who is the authoritative source of the software
2. Integrated as a component from an upstream supplier who also provides an SBOM
3. Integrated as a component from an upstream supplier who does not provide an SBOM

As part of delivering components to users, suppliers also deliver the associated SBOM(s), or
provide a means for the consumer to easily obtain SBOMs. SBOMs include both components
that the supplier originally creates and components that the supplier obtains from other
suppliers.

A set of many interconnected supply chains is likely a directed acyclic graph, as shown in
Figures 1, 2, and 3. Ultimate upstream suppliers only create original components and do not
include components (i.e., do not have dependencies) from any other supplier. In Section 2.6,
Carol is an example of such a supplier. Components flow downstream along supply chains
throughout the graph. At the far ends of the graph, ultimate consumers only obtain components
and SBOMs and do not produce components or SBOMs. Throughout the middle of the graph,
most participants act as both suppliers and consumers. Even end-user organizations may act as

30 https://tools.ietf.org/html/rfc4287

29 https://datatracker.ietf.org/doc/html/rfc8520

28 https://www.openchainproject.org

27 https://datatracker.ietf.org/doc/html/rfc8322

26 https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-sbom-access-02

Second Edition 22

https://tools.ietf.org/html/rfc4287
https://datatracker.ietf.org/doc/html/rfc8520
https://www.openchainproject.org/
https://datatracker.ietf.org/doc/html/rfc8322
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-sbom-access-02

suppliers, producing SBOMs for in-house components or external components such as
websites, mobile applications, or IoT devices.

Suppliers are responsible for components they create and include. Suppliers are also
responsible for providing the collected set of components to their downstream consumers. In a
macroeconomic sense, suppliers are the least cost avoiders, since they have high-quality
authoritative information about their components and comparatively low costs to generate and
share that information. This model distributes the cost to produce SBOM information to31

suppliers.

In this network, there are some scenarios where a supplier may create SBOMs for upstream
components, in which the supplier is acting as the author of the SBOM and not the supplier of
the upstream component. When a supplier creates such SBOMs, the supplier is expected to
clearly convey that they are only the author of the SBOM, and are not the supplier of the
component. This informs consumers of the lack of first-hand, authoritative SBOM information for
the component. In such a case, the Author Name and Supplier Name would be different.

31 https://www.lawfareblog.com/cybersecurity-and-least-cost-avoider

Second Edition 23

https://www.lawfareblog.com/cybersecurity-and-least-cost-avoider

The concepts around SBOM exchange and network rules are designed so that those who
choose and operate software can obtain comprehensive lists of components they use across
different suppliers and supply chains. Figure 3 expands the example in Figure 2 to show a user
of two software products (primary components) from two different supply chains. The user has
two SBOMs, one shown in Table 4 and one in Table 6.

Figure 3: User graph with two supply chains

Component Name Supplier
Name

Version
String

Author Hash UID Relationship Relationship
Assertion

NanoPhone Nancy v1254-a4 Nancy 0x523 237 Primary Partial

|--- OpenLibrary Oscar 0.9.8s Nancy 0xA23 394 Included in Partial

|--- |--- Protocol Paul 2012.11 Nancy 0xB53 934 Included in None

Table 6: Conceptual SBOM table representation for Nancy’s NanoPhone

Second Edition 24

3.5 Roles and Perspectives

3.5.1 Perspectives
Different stakeholders will use SBOMs in complementary yet distinct ways. Roles and Benefits
for SBOM Across the Supply Chain presents three stakeholder perspectives: those who
produce, choose, and operate software.32

3.5.1.1 Produce
This SBOM model is designed with the idea that all suppliers create SBOMs for their own
components. When SBOMs for upstream components are not available, a supplier may need to
author an SBOM for a different supplier’s component. In the case where a supplier does not
provide SBOM information, there is a higher likelihood that this lack of clarity will cause
downstream users to assume the worst about the unknown parts of the product. An additional
benefit to suppliers is the ability to determine which organization to contact to get fixes for
vulnerabilities in upstream components.

3.5.1.2 Choose
SBOMs can be used by prospective choosers (e.g., development, acquisition, or procurement)
considering the use of a component or product that has an associated SBOM. Choosers are
likely to be interested in information directly attributable to the product, such as its baseline
component or license information. Additional SBOM information about licensing, vulnerabilities,
and support lifecycle can factor into the selection process.

3.5.1.3 Operate
In any industry, operators struggle with the lack of complete information on components or
products they are expected to support. An SBOM becomes a very relevant source of this
information to provide visibility into the software and its components. Some of this information
may be static, such as licensing information. However, due to the dynamic nature of software,
some of this information may change or be updated after a component’s initial distribution.

Most of the information of ongoing interest for operators is expected to be found in SBOM
updates. Operators can also use the current information to verify the state of the software
before it is to be in production at their site or business.

3.6 SBOM Use Cases

The core focus of this SBOM model and the baseline attributes is to identify components and
their relationships. Most SBOM use cases require additional information such as new attributes,

32 https://ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf

Second Edition 25

https://ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf

relationship types, or external data connections. This section highlights several notable SBOM
use cases.

3.6.1 Vulnerability Management and VEX
Vulnerability management is one of the more prominent SBOM use cases. Today, it is often an
expensive and time-consuming effort to determine whether a vulnerable upstream component is
used, and if the vulnerability is present or exploitable in downstream components. SBOM and
VEX data helps suppliers, users, and other defenders more quickly and accurately assess the
risk posed by vulnerable components, which are often hidden behind opaque supply chain
relationships.

Vulnerability management requires sources of vulnerability information (such as CVE and the
NVD), mapping of vulnerabilities to components (such as CPE as used in the NVD), and a way
to convey vulnerability or exploitability status (such as VEX). While VEX was developed to
address the vulnerability management use case, VEX is not limited to use with SBOMs or
necessarily expected to be included in the SBOM itself. One concern is the incorrect detection
of vulnerabilities based on limited information such as version strings, protocol banners, or other
heuristics. VEX can be used to indicate that software is not vulnerable or exploitable, even when
the SBOM indicates the presence of vulnerabilities in upstream components. This can save
suppliers and users the costs of managing, producing, and applying security updates for
components that are not affected.

3.6.2 Intellectual Property

There are a number of intellectual property use cases that could be improved with better
inventory data. Managing software licensing (including constraints on use or redistribution) for
included components and tracking entitlement (permission to use copies or features of
components) are two common use cases. A notable market exists for software composition
analysis tools to help determine the contents of components, in part to identify license
requirements. SBOM data would improve knowledge about composition without depending on
binary analysis tools. Both SPDX and SWID were initially designed to convey license and
entitlement information.

This use case requires associations of different licenses and types of licenses to components,
and a way to evaluate the net effect of different components with different licenses combined
into an assembled good.

3.6.3 High Assurance

High assurance of the source and integrity of components requires information about the
pedigree and provenance of components, such as how they were built and packaged, who
created and modified them, and their chain of custody through the supply chain. As with the

Second Edition 26

other use cases, high assurance will require additional attributes about components, different
relationship types, and likely different supplier information.

3.7 Tool Support
The availability of SBOM generation and management tools will be critical for widespread
adoption. Available tools include swid-tools, swidGenerator, CycloneDX Tool Center, and33 34 35

SPDX Tools. SBOM functionality will need to be integrated into software development,36

packaging, and asset management systems.

36 https://spdx.dev/resources/tools/, https://tools.spdx.org/app/

35 https://cyclonedx.org/tool-center/

34 https://github.com/strongswan/swidGenerator

33 https://apps.fedoraproject.org/packages/swid-tools

Second Edition 27

https://spdx.dev/resources/tools/
https://tools.spdx.org/app/
https://cyclonedx.org/tool-center/
https://github.com/strongswan/swidGenerator
https://apps.fedoraproject.org/packages/swid-tools

4 Terminology
The following terms have specific meaning within the scope of this document and within the
overall multistakeholder process. Each definition is written to be a direct gramatical replacement
for the term.

4.1 SBOM
(Software Bill of Materials)

list of one or more identified components, their relationships, and other associated information

The SBOM for a single component with no dependencies is just the list of that one component.
“Software” can be interpreted as “software system,” thus hardware (true hardware, not firmware)
and very low-level software (like CPU microcode) can be included. The primary focus of this
effort is software components; however, hardware is not excluded.

4.2 Component
unit of software defined by a supplier or author

A product is a component. So is a library. So is a single file. So is a collection of other
components, like an operating system, office suite, database system, car, an engine control unit
(ECU) in a car, a medical imaging device, or an installation package. While “component“ is
primarily intended to represent packaged, compiled, or binary code, source code is not
excluded, nor is hardware.

Depending on perspective in the supply chain, a component (often the primary component) can
be considered to be a product, intermediate good, final good, or final assembled good.

4.3 Attribute
characteristic of or information about a component or an SBOM

Baseline attributes are defined in Section 2.2. Other attributes can be defined as needed to
meet specific use cases and applications. In a table, an attribute is a column.

4.4 SBOM Entry
component and its associated attributes

In a table, an entry is a row.

Second Edition 28

4.5 Author
entity that creates an SBOM

When author and supplier are different, this indicates that one entity (the author) is making
claims about components created or included by a different entity (the supplier).

4.6 Supplier
entity that creates, defines, and identifies components and produces associated SBOMs

A supplier may also be known as a manufacturer, vendor, developer, integrator, maintainer, or
provider. Ideally, all suppliers are also authors of SBOMs for the suppliers’ components. Most
suppliers of software components are also consumers of other suppliers’ software components.
Suppliers and consumers can exist within the same organization.

4.7 Consumer
entity that obtains or receives SBOMs

An entity can be, and often is, both a supplier and consumer, existing in the middle of a supply
chain.

Second Edition 29

5 Background

5.1 Overview of the NTIA Multistakeholder Process
On July 19, 2018, the National Telecommunications and Information Administration (NTIA)
convened a meeting of stakeholders from across multiple sectors to begin a discussion about
software transparency and the proposal being considered for a common structure for describing
the software components in a product containing software. The output of this meeting was to
create a number of task groups, which then led to documents produced by each of these
groups. This document is the output of the “Understanding the Problem” (or “Framing”) task
group and seeks to (1) describe the problems that are initiating the need for a software bill of
materials, (2) identify what a baseline SBOM should include, and (3) provide an overview of the
processes to manage SBOMs. The reports from the other task groups are available from the
NTIA website.37

Understanding the Problem (Framing)
Describe the scope of the idea of software transparency and the problems it seeks to
solve, including how SBOM data might be shared. Outputs included (1) a description of
baseline SBOM attributes, (2) the identification of goals, problem statement, and scope,
(3) useful terminology, and (4) an outline of basic process and implementation guides.

Use Cases and State of Practice
Focused on identifying use cases, current and possible future, where SBOMs or similar
data is used to achieve various goals. Through review of the current state of practice,
outputs were developed to identify what works today and describe barriers to success.

Standards and Formats
Investigated existing standards and initiatives as they apply to identifying the external
components and shared libraries, commercial or open source, used in the construction
of software products. The group analyzed efforts underway in the community and
industry related to assuring this transparency is readily available in a machine-readable
manner.

Healthcare Proof of Concept
A collaborative effort between healthcare delivery organizations and medical device
manufacturers that established a prototype SBOM format and exercised use cases for
SBOM production and consumption. The goal was to demonstrate successful use of
SBOMs and relate to the overall cross-sector effort to establish standardized formats
and processes.

37 https://www.ntia.gov/SBOM

Second Edition 30

https://www.ntia.gov/SBOM

5.2 Mission Statement
The mission of the NTIA multistakeholder process on Software Component Transparency is to:

Explore how manufacturers and vendors can communicate useful and actionable
information about the third-party and embedded software components that comprise
modern software and IoT devices, and how this data can be used by enterprises to
foster better security decisions and practices.38

The goal of this process is to foster a market offering greater transparency to organizations, who
can then integrate this data into their risk management approaches.

5.3 Scope
The scope of this initiative will include the development of a model for a Software Bill of
Materials (SBOM), how it can be shared, and how it can be used to help foster better security
decisions and practices. To make the SBOM useful, this initiative will also need to outline the
applicable use cases to ensure that the output is useful for all stakeholders.

All industries utilizing or producing software should be considered in the scope of this initiative,
including but not limited to automotive, financial, healthcare, operational technology (OT), and
“traditional” IT. Despite the focus on software (the “S” in SBOM), software doesn’t run by itself. A
software system requires not only traditional computing hardware (e.g., CPUs, memory, disk,
network, etc.,) but may also include functional hardware that makes devices actually work, such
as actuators and sensors.

This effort will focus on a limited scope of addressing the creation of harmonized elements of an
SBOM that will aid in the sharing of software component information. There are, however,
related dependencies and supporting activities that should be considered outside of this scope
in order to more fully realize benefits of software component transparency:

● Lists of known vulnerabilities mapped to components
● Ways to convey the status or degree of exploitability or exposure of vulnerabilities (VEX)
● Standardized sharing mechanism for SBOMs39

Learning from principles of supply chain management in other fields, this effort is focused on
harmonizing how to describe software components in the form of an SBOM. The intention is to
improve how information is shared about the software that we build, acquire, operate, and
depend on.

39 https://ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf

38 https://www.ntia.doc.gov/SoftwareTransparency

Second Edition 31

https://ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.doc.gov/SoftwareTransparency

6 Conclusion
Organizations across the globe face operational and supply chain questions about the software
being actively used in their environments. Much of this software handles critical portions of their
business activities while providing very little or no visibility into the software’s component parts.
Questions around known vulnerabilities continually go unanswered due to this lack of visibility.
One way to increase software transparency, enable businesses to better manage the security of
their networks, and allow suppliers to monitor their components is to establish a harmonized
model for creating and exchanging SBOMs.

To be useful to end-user organizations, an SBOM needs to include baseline identity and
relationship information that enables correlating and connecting software components as they
move through the supply chain. In the interest of rapid adoption, a set of minimum baseline
attributes has been defined. These attributes generally align with existing formats such as
SPDX, CycloneDX, and SWID. As noted in this document, however, limiting an SBOM to only
this baseline information is not sufficient to enable a number of identified use cases and
applications.

While the use of SBOMs will not solve all of the security issues facing the industries involved in
this initiative, it will help to increase transparency and better inform those defending their
networks and systems from known vulnerabilities. As the use of SBOM matures and becomes
more common, the ready availability of baseline SBOM information will lead to further work in
establishing more coordinated and standardized methods of sharing and managing SBOMs.
One of the reasons to standardize the structure and content of the SBOM is to enable these
next steps. Tooling will also be a major factor in the adoption and further development of
SBOMs.

Overall, the goal is to ensure that the necessary information, captured and exchanged through
SBOMs, is available to those who need it, thereby leading to better asset, intellectual property,
and vulnerability management.

Second Edition 32

7 Changes
Significant changes between this and the previous edition include:

● Added Timestamp to Baseline Attributes
● Clarified requirements aspects of Baseline Attributes
● Added CycloneDX as an additional format
● Removed Existing Formats (previously Section 3), renumbered accordingly
● Updated language in Baseline Attributes and Terminology
● Updated and harmonized language across working groups
● Updated figures and tables
● Made various editorial improvements and clarifications

Second Edition 33

8 Acknowledgements
The chairs of the Framing Working group, Michelle Jump (MedSec) and Art Manion (CERT
Coordination Center), thank the working group membership for their time and effort.
Acknowledgement does not imply endorsement of this document and its content.

Tom Alrich, Tom Alrich LLC
John-Luc Bakker, BlackBerry US
Stephen Barrett, BlackBerry US
David Dillard, Veritas Technologies
Dick Brooks, Reliable Energy Analytics LLC
Phil Englert, MedSec
Christopher Gates, Velentium
Les Gray, Abbott
Charlie Hart, Hitachi
Audra Hatch
Ed Heierman, Abbott
JC Hertz
Eliot Lear
Bruce Lowenthal, Oracle
Bob Martin, MITRE Corporation
Dmitry Raidman, Cybeats
Vijay Sarvepalli, CERT Coordination Center
Duncan Sparrell, sFractal Consulting
Rich Steenwyk, GE Healthcare
Kate Stewart, The Linux Foundation
Tim Walsh

The working group also recognizes and appreciates the efforts of Allan Friedman and Megan
Doscher of the National Telecommunications and Information Administration.

Second Edition 34

