
Software Identification
Challenges and Guidance
NTIA Multistakeholder Process on Software Component Transparency
Framing Working Group
2021-03-30

Ruben Ramirez
https://unsplash.com/photos/W5hUOxgB08Y

Software Identity Discussion and Guidance 2

Table of Contents
1 Executive Summary 3

2 Global Software Component Identification 4

2.1 Name, Namespace, Identification 4

3 Need for Component Identification 5

3.1 Primary SBOM Authorship 5

3.2 Secondary SBOM Authorship 5

3.3 SBOM Assembly 6

4 Guidance for Component Identification 6

4.1 Preferred Case: Use Existing Identification 7

4.2 Alternative Case: Select an Identification System 7

4.2.1 Component Identification Systems 7

4.2.1.1 A Note on CPE 8

4.3 Deconfliction 8

5 Supplier Identification 9

6 Conclusion 10

Software Identity Discussion and Guidance 3

1 Executive Summary
Perhaps the biggest single challenge to supply chain transparency and the Software Bill of
Materials (SBOM) model is identifying software components with sufficient discoverability and
uniqueness. Component identification is fundamental to SBOM and needs to scale globally
across diverse software ecosystems, sectors, and markets. This paper offers guidance to
functionally identify software components in the short term and converge multiple existing
identification systems in the near future. The guidance can be applied today, and can be
summarized as follows:

1. Preferred Case: Use Existing Identification
Use authoritative component identification and a corresponding identification system
from component suppliers.

2. Alternative Case: Select an Identification System
If authoritative identification is not available, create best-effort identification.

a. Use an existing component identification system, particularly one that aligns with
your software development ecosystem.1

b. Lacking a clear choice of identification system, select a widely-used, active, and
open system (see Component Identification Systems).

An important goal of this guidance is to limit the proliferation of duplicate and contradictory
component identification. To that end, always seek existing component identification and use
existing identification systems when possible.

While further testing and iteration are needed, experience with existing software identification
and dependency tracking systems suggests that global-scale identification will likely leverage
aspects of the Domain Name System (DNS) and intrinsic identity (i.e., cryptographic hashes of
software components).

This document represents the status of in-progress work and assumes some familiarity with the
output of the NTIA Software Component Transparency multistakeholder process.2 For additional
details on baseline attributes, terminology, and general SBOM background, see Framing
Software Transparency.3

1 For example, the pip package manager and Python Package Index (PyPI) make up a component
identification system for the Python development ecosystem.
2 A range of resources on SBOM and software component transparency are available at
https://www.ntia.gov/sbom.
3 https://www.ntia.doc.gov/files/ntia/publications/ntia_naming_use_cases_-_framing_2020-04-11.pdf.

https://www.ntia.gov/sbom
https://www.ntia.doc.gov/files/ntia/publications/ntia_naming_use_cases_-_framing_2020-04-11.pdf

Software Identity Discussion and Guidance 4

2 Global Software Component Identification
“There are only two hard things in Computer Science: cache invalidation
and naming things.”

— attributed to Phil Karlton, circa 19964

As of early 2021, there exists no single globally authoritative source for SBOM component
identification. As such, two different SBOM authors could use two different identifiers for the
same component. The converse problem can also occur if two authors use the same identifier
for different components. Lack of clarity about component identity can also make it difficult to
map an SBOM component to vulnerabilities, licenses, or other data of interest to an SBOM
consumer. In the first multi-organization SBOM proof of concept exercise in 2019, the lack of
common identifiers was noted as a key obstacle to automation.5 In a vision of future SBOM
perfection, the SBOM of a given component would provide the authoritative, sufficiently-globally-
unique “correct” identity of that component, authored by the originating supplier of the
component.

Reasons for the current heterogeneity in component identification extend beyond the lack of a
single canonical source. Suppliers of software components define names and identification
according to their own needs. Several standards have emerged over the years, including
Common Platform Enumeration (CPE), software identification (SWID) tags, Package URLs
(purls), and SoftWare Heritage persistent IDentifiers (SWHIDs). As suppliers keep their own
records and integrate this data into their development processes, the suppliers might use some
of these standards or define their own internal schema.6 Component identification assigned by
the originating supplier cannot be assumed to be static either, as dynamics like corporate
acquisitions and project forking often lead to changes in component identification. Even
identifying and managing digital artifacts within a defined scope or namespace can be
challenging.

2.1 Name, Namespace, Identification
Global identification of software components needs to be sufficiently unambiguous so that
conflicts, duplicates, and other failures are rare and can be resolved. Naming is part of, but not
equivalent to, identification. A name is one of many attributes that can help to identify a
component. A name alone may or may not be sufficient to identify a component, and a
component can have more than one name. A comprehensive component identification system
will need to account for multiple names for the same component, likely through aliases or
equivalency relationships.

4 https://martinfowler.com/bliki/TwoHardThings.html.
5 https://www.ntia.gov/files/ntia/publications/ntia_sbom_healthcare_poc_report_2019_1001.pdf.
6 In support of convergence, please try not to create new identification systems, see Guidance for
Component Identification below.

https://martinfowler.com/bliki/TwoHardThings.html
https://www.ntia.gov/files/ntia/publications/ntia_sbom_healthcare_poc_report_2019_1001.pdf

Software Identity Discussion and Guidance 5

A namespace is a way to partition names or identifiers. Component names within a namespace
must be unique. DNS is perhaps the most well-known and widely-used example of a large-scale
hierarchical namespace.7 DNS and its associated mechanisms (like Uniform Resource
Identifiers, URIs, and Uniform Resource Locators, URLs)8 could be used as the foundation for
global software component (and supplier) identification. A number of existing and developing
SBOM formats and component identification systems use mechanisms based on DNS.

It is unrealistic at present to expect a single global namespace for all software components. As
demonstrated in other large scale identification systems (e.g., DNS and XML namespaces), a
scalable solution will likely require a way to federate and interrelate different hierarchical
namespaces. Furthermore, there exist identification systems that do not rely on namespaces or
other types of hierarchies. For example, the cryptographic hash of a component is a unique,
intrinsic identifier that is included in the Framing Software Transparency baseline attributes and
is supported by existing identification systems and SBOM formats.

3 Need for Component Identification

SBOM component identity information may be generated and changed under several different
conditions. While a full set of use cases is outside the scope of this document,9 it is important to
acknowledge some of the more common use cases and key roles.

3.1 Primary SBOM Authorship
In a vision of future SBOM perfection, all suppliers author SBOMs for their primary components
(i.e., components that the suppliers assemble and create themselves) and define the
component identifiers (including names). Suppliers are the presumptive sources of truth for the
baseline attributes and any other information associated with the suppliers’ primary
components. When suppliers modify or fork upstream components, the suppliers assume
SBOM responsibility for the new components. When suppliers transfer components downstream
to users or customers, the suppliers provide assembled SBOMs. These consist of SBOMs for
the suppliers’ primary components and SBOMs for included upstream components. With a
critical mass of participating suppliers, this recursive provisioning of SBOM data would make
SBOM collection and assembly relatively straightforward.

3.2 Secondary SBOM Authorship
In cases where the supplier of a component has not created an SBOM, or there is sufficient
uncertainty about the quality of the SBOM information, another stakeholder can author an
SBOM. This secondary SBOM author may be an end user or a downstream supplier. The

7 https://www.icann.org/resources/pages/unique-authoritative-root-2012-02-25-en.
8 https://tools.ietf.org/html/rfc3986#section-1.1.3.
9 For a more complete discussion, see Roles and Benefits for SBOM across the Supply Chain
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf.

https://www.icann.org/resources/pages/unique-authoritative-root-2012-02-25-en
https://tools.ietf.org/html/rfc3986#section-1.1.3
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf

Software Identity Discussion and Guidance 6

SBOM data may be used to assemble other SBOMs or integrated into services such as
software composition analysis (SCA) or software asset management (SAM). The secondary
author should take a best-effort approach to generate the baseline attributes and follow the
Guidance for Component Identification below. By observing the difference between the author
and supplier names, an SBOM consumer can determine that the supplier of the primary
component did not create the SBOM.

3.3 SBOM Assembly
Suppliers should, as described in Primary SBOM Authorship, create SBOMs for their primary,
first-party components, obtain SBOMs for upstream components from the relevant suppliers,
and provide assembled SBOMs to their downstream users. If authoritative upstream SBOMs
are not available, primary suppliers should obtain SBOMs from alternative sources or create
“best-effort” SBOMs. When creating secondary SBOMs, component (and supplier) identification
should follow the Guidance for Component Identification. To the extent that SBOM information
is secondary, missing, incomplete, or not authoritative, this knowledge (or lack thereof) should
be conveyed through the SBOM.10 Practical SBOM assembly depends significantly on the
capability to share and exchange SBOMs.11

4 Guidance for Component Identification

A goal of the following guidance is to harmonize and reduce the number of different
identification systems for software components. This guidance builds on existing practices and
organizational structures with minimal adoption of new technology or changes to existing
practices. This guidance is particularly intended for the Secondary SBOM Authorship use case,
where the author who creates the SBOM is not the component supplier.

This guidance follows a two-part test.

1. In the first, preferred case, if an authoritative source of component identification
information exists (ideally, the component supplier), then SBOM authors should use that
source and identification system. This enables a federated approach that treats the
supplier of the software as the primary and authoritative source of SBOM information.

2. In the alternative case, SBOM authors should select a widely-used, active, and open
identification system, taking into consideration the author’s software ecosystem.

This two-part test does not solve every aspect of the identification problem. For instance, SBOM
formats typically provide a way to record component identity, but the formats themselves may
not specify a namespace, naming convention, or an identification system.

10 See section 2.4.1 of https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf.
11 https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf.

https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf

Software Identity Discussion and Guidance 7

4.1 Preferred Case: Use Existing Identification
If established, well-defined identities exist for the components in question, then SBOM authors
should use those identities and the corresponding identification system. Such systems include
package managers with unique identifiers for components within their scope. This would also
include suppliers of proprietary software that clearly communicate the identity of their
components.

Examples of existing identification mechanisms include:

● npm (package manager for Node.js);
● Java Language Specification (JLS);12
● Mechanisms that incorporate DNS, such as a URL to a tagged release on a code

hosting platform (e.g., GitHub, GitLab, BitBucket, SourceForge, and many others).

Lacking established component identity and an identification system, suppliers and authors
should use one of the widely-accepted Component Identification Systems listed below.

4.2 Alternative Case: Select an Identification System
If established, authoritative identities and an identification system do not exist for given
components, then SBOM authors should select an identification system that is under active
development and that matches the software ecosystem being used.

Using an existing identification system helps the community converge towards greater
scalability and automation by using existing data formats and predictable tools and processes.
Secondary SBOM authors should avoid creating new component identifiers or identification
systems if at all possible.

4.2.1 Component Identification Systems
While a universal, global component identification system remains a challenge, practical,
smaller scale options exist. The following component identification systems have been
considered:

1. package URL (purl);13
2. SWID tags;14
3. Software Heritage IDs (SWHID)15.

12 https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html.
13 “... package URL is an attempt to standardize existing approaches to reliably identify and locate
software packages” and works with many different identification systems, see https://github.com/package-
url/purl-spec.
14 SWID tags are mentioned here for their capability as a software identifier, not their broader use as a
standard that can convey SBOM dependency relationships. See https://csrc.nist.gov/projects/software-
identification-swid/guidelines.
15 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html.

https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
https://github.com/package-url/purl-spec
https://github.com/package-url/purl-spec
https://csrc.nist.gov/projects/software-identification-swid/guidelines
https://csrc.nist.gov/projects/software-identification-swid/guidelines
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Software Identity Discussion and Guidance 8

Component identification is a required part of a comprehensive SBOM solution, but additional
data, formats, and tooling are needed.16

As noted previously, many software identification systems are based on DNS and related
mechanisms like URIs or URLs. Some package managers can automatically download software
given a URL, and where this URL is stable and unique to a specific version, a URL can serve as
a component ID. URLs can be used to re-acquire the component and do not require a central
registry beyond the use of DNS. Even if the component referenced by the URL is no longer
available, the URL may still be functional for identification purposes.

Some component identification systems integrate the location or source of components. These
sources may change over time or even disappear. For example, some projects migrated away
from GitHub after its acquisition in 2018,17 and 250,000 repositories vanished from BitBucket in
2020 when Mercurial support was phased out.18,19

While not strictly a requirement of an SBOM or component identification system, the ability to
maintain long-lasting identities, references, and other artifacts is an important consideration. For
example, SWHIDs use persistent, intrinsic (i.e., hash-based) identifiers for source code.

4.2.1.1 A Note on CPE
Common Platform Enumeration (CPE) is a widely-used software identification system. The
NIST National Vulnerability Database (NVD) is currently one of the only public sources that
maps supplier and component identity (using CPE) to vulnerability identity (using Common
Vulnerabilities and Exposures, CVE20). CPE is widely used by many vulnerability management
solutions and other tools that track publicly-known vulnerabilities. While the NVD currently uses
CPE, the NVD also notes that “... SWID is being looked into as a possible replacement for
CPE.”21

4.3 Deconfliction
When searching for component identification data, SBOM authors may encounter multiple and
conflicting answers. One actual component may have multiple identities, and the same identity
may refer to different components. Changes in supplier organizations and component names
are common causes of such identification conflicts. Suppliers go out of business or stop
developing software, mergers and acquisitions happen, brand and component names change,
and projects fork. Using a Java example, one supplier might use com.sun.java while another
uses com.oracle.java based on when the suppliers started maintaining SBOM data. An
identifier may not be available through a canonical source (such as a widely used package

16 For more information about formats and tooling, see https://www.ntia.gov/SBOM.
17 https://www.vice.com/en/article/ywen8x/13000-projects-ditched-github-for-gitlab-monday-morning.
18 https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket.
19 https://www.softwareheritage.org/2020/04/23/rescuing-250000-endangered-mercurial-repositories/.
20 https://cve.mitre.org/.
21 https://nvd.nist.gov/products.

https://www.ntia.gov/SBOM
https://www.vice.com/en/article/ywen8x/13000-projects-ditched-github-for-gitlab-monday-morning?utm_medium=referral&utm_source=quora
https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket
https://www.softwareheritage.org/2020/04/23/rescuing-250000-endangered-mercurial-repositories/
https://cve.mitre.org/
https://nvd.nist.gov/products

Software Identity Discussion and Guidance 9

manager), there may be multiple widely-used identifiers for a given component, or the same
component may be identified in multiple repositories or package management systems.

In cases where it is not clear that two different identifiers represent the same or different
components, SBOM authors or users should treat the components as different. When faced with
multiple component identifiers, SBOM authors should select the identity that most closely aligns
with their development and maintenance processes, such as choosing an identity based on the
source of a component.

Having more component identification information (e.g., more of the baseline or extended
attributes) can help disambiguate and resolve conflicts, but with the additional cost of managing
and interpreting the information.

5 Supplier Identification
Identifying suppliers is a similar problem to identifying software components. There are multiple
ways to identify suppliers. Multinational organizations may use different legal names in different
countries, marketing brands may differ from legal or official organization names, and mergers,
acquisitions, and other lifecycle changes impact supplier identification. The Japan Exchange
Group,22 D-U-N-S Numbers,23 and IANA Private Enterprise Numbers24 are just three of the
many examples of existing namespaces that identify entities that may also be SBOM suppliers.
As noted previously, various mechanisms based on DNS can be (and are) used for component
identification. These mechanisms generally also support supplier identification, and a number of
existing and developing SBOM formats and identification systems involve DNS. Both domain
names and certificate authorities require registration with varying degrees of cost and validation.

In a highly-scalable SBOM model, dependency on any centralized source of data or
administration raises concerns about resilience, cost (both to operate and to participating
suppliers), and organizational bias. Despite these issues, a “supplier registry” model relying on a
single global namespace for suppliers (not components) has been discussed. Conceptually, if
supplier identities are globally unique, suppliers would have considerable discretion in how to
identify components within their supplier namespaces. With or without a supplier registry, the
SBOM model delegates component identification (and SBOM generation) to suppliers, who are
likely the least cost avoiders.25 The details of a supplier registry are beyond the scope of this
paper, and further discussion is needed to assess the tradeoffs involved. Some key
considerations include:

● SBOM model design: Supplier identity is globally unique, suppliers have significant
autonomy in component identification;

● Cost to different sizes and types of suppliers to obtain and maintain registration;

22 https://www.jpx.co.jp/english/.
23 https://www.dnb.com/duns-number.html.
24 https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers.
25 https://www.lawfareblog.com/cybersecurity-and-least-cost-avoider.

https://www.jpx.co.jp/english/
https://www.dnb.com/duns-number.html
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.lawfareblog.com/cybersecurity-and-least-cost-avoider

Software Identity Discussion and Guidance 10

● Supplier lifecycle, including merger, acquisition, and closure;
● Support for a variety of types of suppliers, including part-time, individual developers and

open source software projects;
● Direct cost to operate the registry;
● Resilience and longevity of the registry, including distributed or decentralized

mechanisms; and
● Organizational and political bias in the operation of the registry.

One notable concern is whether and how a supplier registry would practically work for the
numerous open source software projects who are SBOM suppliers but who often lack a
separate, non-person legal entity that can be registered. It would likely be impractical to require
the creation of such legal entities or domain names for each supplier in real-world supply
chains.

Pending further investigation, a supplier registry model might be a significant part of the solution
to global component identification, particularly if existing supplier identification systems can be
leveraged.

6 Conclusion
Even without a single, robust, and comprehensive global component identification solution, the
guidance in this document can be applied now and is designed to drive convergence as SBOM
becomes more widely adopted. Further work is needed to design, test, and implement global
software component and supplier identification. A globally-scalable model will almost certainly
involve concepts from distributed and federated systems (leveraging existing identification
systems such as DNS) and require intrinsic component attributes (e.g., cryptographic hashes).

	Table of Contents
	1 Executive Summary
	2 Global Software Component Identification
	2.1 Name, Namespace, Identification

	3 Need for Component Identification
	3.1 Primary SBOM Authorship
	3.2 Secondary SBOM Authorship
	3.3 SBOM Assembly

	4 Guidance for Component Identification
	4.1 Preferred Case: Use Existing Identification
	4.2 Alternative Case: Select an Identification System
	4.2.1 Component Identification Systems
	4.2.1.1 A Note on CPE

	4.3 Deconfliction

	5 Supplier Identification
	6 Conclusion

