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ABSTRACT

This report is concerned with the spectral representation of analog M
signals, with particular attention to FDM/FM satellite communication systems.
The FM spectral modeling and gaussian approximation principles are analyzed and
extended to develop computer simulation  programs capable of providing
representative FM spectra. A generalized program is developed to accommodate a
variety of baseband and preemphasis characteristics, and adapted to generate
FDM/FM telephony spectra. The program features the automatic validation and
generation of the gaussian spectrum model if applicable, or the automatic
simulation of the modulation process to generate the FM spectrum samples
otherwise. The program is used to simulate a collection of satellite FDM/FM
telephony spectra, which are to be applied as input data into other available
interference analysis programs, as part of a major automated computer capability
dedicated to the comprehensive assessment of orbital congestion and spectrum
resource management concerns pertinent to national and international satellite
communication systems scenarios.

KEY WORDS

FM Spectrum Models
Gaussian Spectral Approximation
FM Spectrum Simulation
FDM/FM Telephony Spectra

vi




SECTION 1

GENERAL INTRODUCTION

The National Telecommunications and Information Administration (NTIA) is
responsible for managing the radio spectrum allocated to the U.S. Federal
Government, Part of NTIA's responsibility is to: "...establish policies
concerning spectrum assignment, allocation and use, and provide the various
Departments and agencies with guidance to assure that their conduct of
telecommunications activities is consistent with these policies" (Department of
Commerce, 1980). In support of these requirements, NTIA performs spectrum
resource assessments to identify existing or potential spectrum utilization and
compatibility problems among the telecommunication systems of various departments
and agencies. NTIA also provides recommendations to resolve any spectrum usage
or allocation conflicts, and to improve the spectrum management functions and
procedures,

NTIA is engaged in the development of an automated computer capability to be
used by the Federal Government for the comprehensive assessment of mnational and
international satellite communication systenms. The program will feature both
interference evaluation and logical optimization of a varying systems population,
thus supporting the orbit and spectrum resource management functions. The
effective coexistence of multiple satellite systems and service signal
transmissions represents a critical concern from the orbital congestion,
communications interference and service reliability standpoints.

The orbital and spectrum congestion introduces unwanted signals into the
antennas and receivers of dedicated satellites and earth stations. The
interfering signals processed by the satellite transponder and earth station
receiver equipment ultimately appear as degradation effects on the desired output
information, whether it be analog messages or digital symbols. The 1link
geometries and power budgets of the various satellite systems establish desired
and interference signal levels at the receiving station inputs, which need to be
converted into output degradation effects so as to guide the logical assessment
of the operational scenarios. ,

The development of receiver transfer characteristics to evaluate the
interference degradation effects requires accurate spectral representations of
the signals involved (Jeruchim and Kane, 1970; Pontano, et al, 1973; Das and
Sharp, 1975). Many existing models and formulations contain simple qualitative
assumptions or restricted parametric conditions as validity constraints, with
more accurate spectral representations needed to employ the available results or
develop new ones as required. For example, the compact formulations available
for analog FM applications are - conditioned on extreme high or low modulation
indices, with representation uncertainties hindering their usage in intermediate
index situations. '

The sections that follow are concerned with the spectral representation for
analog FM applications. The spectral modeling and gaussian approximation
principles are first identified in Section 2, and then extended to develop
effective FM spectrum simulation programs capable of resolving the modeling
concerns and providing representative FM spectra. The programs developed consist
of a specific one dedicated to a particular baseband modulation, plus a



generalized one capable of handling a wide variety of modulation characteristics.
The specific program presented in  Section 3  features the only nontrivial
modulation case where a compact formulation results for the output spectra. The
program algorithm reproduces the output spectrum formula, thus bypassing the need
to simulate the modulation process itself.

The generalized simulation program of Section 4 then accommodates a variety
of baseband and preemphasis characteristics with minimal assumptions, by actually
simulating the modulation process via equivalent block functions and transform
processors. This program was further adapted to produce FDM/FM telephony spectra
by including a baseband spectrum driver and CCIR preemphasis, with the high and
low baseband frequencies and the rms multichannel frequency deviation selectable
by the user. It also features an adjustable bandwidth expansion parameter that
accounts for the FM spectral expansion while controlling the distortion and
aliasing effects of the discrete representations.

The wvalidity of the gaussian  approximation  for the FM  spectral
representation under high modulation index conditions was analyzed using both the
specific and generalized FM spectrum programs. A gaussian spectrum generation
algorithm was included in each program, and spectral comparisons were performed
to identify the modulation index constraints needed for the gaussian spectral
approximation to hold. The programs can thus deliver either the simulated FM
spectra or their wideband gaussian approximation as needed, and can be wused as
inputs to other programs dedicated to evaluate receiver transfer characteristics
from given spectral representations of the desired and interference signals.

The generalized FM spectrum generation program was employed to generate a
collection of FDM/FM telephony spectra representative of existing and planned
satellite communication systems. The available system specifications are used to
provide the input parameters needed for the spectral generation, and the FDM/FM
output spectra resulting from the simulation program are automatically computed
and plotted along with the gaussian spectral representation for comparison
purposes.

The FDM/FM spectral simulation results are presented in Section 4. The
evolution of the gaussian spectral approximation as the modulation  index
increases is noted to be really governed by the equivalent rms phase deviation
parameter, which depends both on the rms modulation index and the low/high
frequency ratio of the multichannel baseband modulation. An effective
formulation of this dependence is provided in Section 5, and incorporated into
the simulation  program to automatically trigger the gaussian spectral
approximation when valid. ”

The generalized spectrum simulation program is now operational and automated
to deliver the FDM/FM system spectra in an efficient way. The user selects an
equivalent set of modulation parameters, and the program first computes the rms
phase deviation to decide on the gaussian spectral approximation validity. If
the latter is valid, the program next computes the appropriate standard deviation
for the gaussian curve from the input parameters, and proceeds to generate the
gaussian spectrum samples., Otherwise, the program negates the gaussian logic and
proceeds with the FM simulation process to deliver the proper FM spectrum
samples., .




SECTION 2
FM SPECTRAL MODELING AND GAUSSIAN REPRESENTATIONS

The FM signal spectrum models presently employed only have a compact
formulation in certain cases. At low modulation indices, the FM output spectrum
is effectively approximated by ~a discrete carrier component plus a
double-sideband continuous spectrum. The latter has the same shape as the
equivalent lowpass spectrum that phase modulates the carrier under low index
conditions. In particular, such lowpass spectrum will be identical to the input
baseband spectrum when ideal FM preemphasis (parabolic power weighting) is
employed. "

At high modulation indices, the FM output spectrum is characterized by a
small discrete carrier component plus a predominant continuous gaussian spectrum
centered around the carrier component. The relative power distribution between
these discrete and continuous components is uniquely specified by the rms phase
deviation. The only other information needed to specify the FM output spectrum is
then the gaussian standard deviation or variance parameter, which controls the
effective width of the continuous gaussian portion of the spectrum. This
parameter has been formulated in terms of the rms phase or frequency deviation
employed, and renders the FM spectrum model characterization under high index
conditions.

The gaussian spectrum model 1is assumed to hold regardless of the input
baseband spectrum or preemphasis characteristic, as long as the high modulation
index exists., However, the identification of what represents a high index
condition remains somewhat arbitrary. Also, the variety of baseband spectra,
preemphasis characteristics, modulation indices and frequency deviations employed
in the different FM signals of interest spans a considerable range of spectral
shapes and parameter values, which hinders the spectral approximation evaluation.
Hence, the FM spectral modeling issue should be given due attention to assure
accurate signal characterizations and permit reliable interference analyses.

Another pertinent issue consists of the parametric value assignment in the
gaussian spectrum model. The standard deviation parameter in the gaussian
formula is sometimes specified from the rms phase deviation in a PM formulation,
and sometimes from the rms frequency deviation in an FM formulation, as discussed
in what follows. The conversion 1is tractable in most baseband cases without
preemphasis, but the preemphasized baseband cases can lead to computational
difficulties. The preemphasis network can be designed to preserve the rms phase
or frequency deviation but not both in general, and the evaluation of the one not
being preserved may be difficult yet required if the gaussian spectral
representation is to be employed.

GAUSSIAN SPECTRAL APPROXIMATION PRINCIPLES

The original principle supporting the gaussian spectral approximation under
high index conditions is based on Woodward's theorem (Blackman and McAlpine,
1969). It states that the limiting form of the FM power density spectrum as the
index increases is given by the probability distribution of the instantaneous



modulating frequency. Hence, the assumption of gaussian statistics in the
baseband modulating signal (with arbitrary spectrum) directly induces a limiting

gaussian FM spectrum for high indices under the theorem, with the gaussian
standard deviation given by the rms frequency deviation.

The modulation index magnitude needed for an effective representation by the
gaussian spectrum was not resolved in Woodward's theorem. The identification of
crossover index bounds is hindered by the fact that they may vary with the
modulating signal spectrum, since all Woodward's theorem provides is for a
gaussian spectrum convergence in the limit.  There have been some theoretical
extensions of the theorem, with the main results consisting of autocorrelation or
spectrum error estimates or bounds as a function of the rms index or frequency
deviation, as well as some spectral simulation results for specific baseband
spectra. - However, the error’ performance and criteria were found to vary in
prediction accuracy capability with the modulation index value and the baseband
spectral shaping involved (Blackman and McAlpine, 1969; Algazi, 1968),

Another principle supporting the gaussian spectral approximation under high
index conditions relies on a power series expansion (Middleton's expansion) of
the autocorrelation function of the modulated signal, again assuming baseband
gaussian statistics but arbitrary spectrum (Abramson, 1963). The series terms
are each characterized by a different power of the autocorrelation function of
the equivalent baseband phase modulation including any preemphasis effects. The
autocorrelation function of the frequency modulated signal becomes a weighted
superposition of these powers of the autocorrelation function of the phase
modulating signal.

The power density spectrum of the modulated signal becomes a weighted
superposition of spectral terms obtained from the series expansion. Each spectral
term consists of an n-th order convolution of the baseband phase modulating
spectrum, with the number of convolutions varying with the series terms. Each
spectral convolution is then weighted by a different coefficient and superposed
to yield the resultant FM spectrum. The gaussian spectral approximation
essentially consists of motivating how the weighted superposition of different
spectral shapes can be manipulated under high index conditions to result in a
gaussian spectrum (Abramson, 1963).

Analysis of the Series Expansion Representation

The equivalent phase modulating signal is assumed to be a stationary
gaussian process with zero mean and fixed standard deviation (B radiams). It
modulates a sinusoidal carrier of fixed amplitude (A) and frequency (w . radians
per second), so that the correlation function (t) of the modulated signal y(t)
can be expressed in terms of the correlation’ function R (t) of the modulating
signal x(t) as (Abramson, 1963):

2 _ _ : : :
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The values Rx(o) = Bz and Ry(o) = AZ/Z represent the average power in the
modulating and modulated signals, respectively. It 'is convenient to use
normalized (unit power) correlation functions r(t) = R(t)/R(o) and corresponding
power density spectra s(f) = S(f)/R(o) for both signals, and to work with an
equivalent lowpass spectral version of the modulated signal (which need only be
shifted and scaled to the carrier frequency to obtain the actual spectrum). The
equivalent lowpass correlation function and power spectrum of the modulated
signal are given by (Abramson, 1963): .

= e B2 [l-r (D] _ -2 ¢ g2n
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n=9o
and
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n=1
The power spectrum expression consists of a weighted superposition of the
form sy(f) = Za,C,(f), where the n=o spectral term corresponds to the discrete
carrier component with C,(f) =38(f). The other Chlf) = sy(f) : sx(f) spectral

terms are each an n-th order convolution of the normalized modulating spectrum
sx(£f). Each of these Cp(f) spectral terms has a unit area, since sx(f) has this
property and it is preserved through the successive convolutions (e.g., sx(f) has
statistical p.d.f. properties and C,(f) behaves 1like the p.d.f. of a sum of
independent identical random variables).
2

The weighting coefficients are given by ap = e-B .an/(n!) so that they are
poisson distributed over (n) with parameter A = B2, These non-negative
coifficients add to unity so that each represents the fraction of the total power
(A“/2) in the modulated signal that is being contributed by each series term
(since the C,(f) spectra all contribute unit power)., In summary, the equivalent
spectrum of the modulated signal has been developed as a weighted superposition
of spectral terms, where the Cp(f) convolution functions control the spectral
shapes being superimposed, while the a, weights control their relative magnitudes
and specify their power contribution to the total modulated signal power.

At low rms phase deviations (B), only the first few series coefficients are
needed to essentially reproduce the total signal power. As the B-value
increases, the power distribution becomes more spread out (rather than
concentrated) on many (rather than few) terms with intermediate values of (n),
with other terms having small or large (n) values contributing little power.
Hence, the significant terms needed to preserve a given power percentage in a
truncated (at both sides) series representation can be readily identified from
the statistical poisson distribution, which specifies the a, coefficient
magnitudes. The procedure is presented in TABLE 1 as a function of the rms phase
deviation (B) for various power percentages (90,95,99%) to be preserved in the
modulated signal.



TABLE 1

SIGNIFICANT TERMS (VALUES OF n) VS RMS PHASE DEVIATION (B)
FOR VARIOUS POWER PERCENTAGES

A= B  n(90z) 1n(95%) n(99%)
1 1.000 0-2 0-4 0-4
2 1.414 0-5 0-5 0-6
3 1.732 1-6 0-6 0-8
4 2.000 1-7 -8 0-9
5 2.236 2-9 1-9 0-11
6 2,449 2-10 2-11 1-13
7 2.646 3-11 2-12 1-14

8 2.828 4-13 3-13 2-16
9 3.000 4-13 4-15 2-17

10 3.162 5-15  4-16 3-18
11 3.317 6~16 5-17 4=20
12 3.464  7-18  6-19 4=21
13 3.606 7-18  6-20 5-23
146 3.742  8-20 7-21 5-24
15 3.873 9-21 8-23 6-25
16  4.000  10-23 9-24 7-27
17 4,123 10-23 9-25 7-28
18 4,243 11-24 10-26 8-29
19 4.359  12-26 11-27 9-31
20 4,472 13=27 12-29 10-32




These results can be directly used for the selection of the number og series

and spectral convolutions needed in a truncated representation or
gigziation ofpthe modulated signal spectrum. The entries in TABLE 1 sh9w that up
to nine terms besides the carrier component may be needed for B<2 radians, with
the number reaching 17, 27, 32 terms as the index increases 'to 3, ?, 5 radians.
Some spectral simulations of FDM/FM telephony = are available in the open
literature for 8= 1 to 5 radians, but employing only ten ser%es terms in the
truncated representation (Ferris, 1968). The results of TABLE 1 111ustra%e that
not only more terms are actually needed for such range, but that the first Fen
terms have a negligible or secondary contribution once the rms phase deviation

exceeds four radians.

Analysis of the Gaussian Spectral Approximation

The gaussian spectrum approximation for high g-values must account for both
the spectral shaping provided by the convolution terms and the power distribution
provided by the weighting coefficients. The shape of each of the convolution
functions Cn(f) approaches a gaussian form as (n) increases based on the central
limit theorem. All these limiting gaussian spectra have zero mean if sy(f) is a
lowpass spectrum, but their standard deviations are different for each (n) value.
Indeed, their respective = variances are given by 6 2 =n.B2 where
B 2= fzsx(f)df is the rms bandwidth squared of the: phase %odulati%g signal.
Hence, even - though all high-order spectral convolutions - are approximately
gaussian, each converges to a distinct gaussian spectrum with their rms spectral
widths varying with (n) according to dn = /HZBX.

The poisson dastribution of the weighting coefficients (an) can itself be
approximated for B large by discrete point samples from a gaussian envelope with
mean A = 82 and variance A = B2as shown in Figure l. The solid lines represent
the actual poisson values whose center 1location and width distribution : varies
with A = 82, but which ~follow the dotted gaussian envelopi approximation when
A = B82is large. The poisson distribution peaks at n = A = 8° (i.e., the nearest
integer to A = 82) with a magnitude ap= (27 ) 2 based on the gaussian envelope
peak. The2 atheE coefficients on both sides are reduced by a factor of
exp [- (n-B°)“/2B°] relative to the peak based on the gaussian envelope decay.

In sumnary, the superposition s_(f) = Za,C,(f) of poisson-weighted,
spectral convolution functions must account for the distinct convergence behavior
of the coefficients a, and the convolutions C,(f) when motivating the gaussian
spectral approximation. .The distinct limiting representations involved for each
series term are formulated below. They are governed by the gaussian envelope
approximation to the poisson distribution for the weighting coefficients, and by
the gaussian spectrum approximation via the central 1limit theorem for the
convolution functions. ' '
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The fact that each convolution function C,(f) approaches a distinct gaussian

shape does not imply that their weighted superposition can also be’assumed to be
gaussian. The following rationale is also 4dinvolved in motivating the gaussian
spectral representation: ' '

(a)v Only those series terms with n2R2will have significant weighting
coefficients and need be kept.

(b) Their associated Cn(f) functions can all be approximated by the same
curve by letting n = B“ for all terms kept, which removes the spectral width
variation with n.

() e series has now been reduced to (Zan).C(f), where C(f) = Cn(f) with
n =B%, and the sum of coefficients can be approximated by unity since only
significant terms were kept.

(d) The series has now become ‘just C(f), which is a gaussian spectral
function with standard deviation ¢ =B+B_as obtained by setting n =B“ in
Op = vn-By. X

(e) The equivalent lowpass power spectrum of the modulated signal is thus
approximated by

- (£2/9p2; 2
o~ (9728 B.%)

s(f)  p S (5)

f 2.2
2mR Bx



This development emphasizes that the gaussian spectral representation of the
modulated signal under high rms phase deviation conditions is not a
straightforward approximation. It not only requires that each convolution term
C,(f) be gaussian approximated, but also that the weighting coefficients
arlselectively cooperate to remove the spectral width variations with n and
approximate a single gaussian spectrum from the superposition of distinct
approximately gaussian spectra. Also, the standard deviation o=B8:B_ of the
gaussian spectral approximation can be noted to be a function of the mms phase
deviation (B) and the rms bandwidth (By) of the equivalent phase modulating

signal.

The critical role of the weighting coefficient distribution is further
emphasized by considering the special case where the modulating signal has itself
a gaussian spectrum, i.e.,

2 2.
2 o= (£7/2By%)
Sx(f) = B” . : | (6)
'ZTrBX2

In this case the C,(f) convolution, functjons in (4a) will all be exactly.
gaussian with zero mean and variance 0,“=1n-'B_° as in (4b), except for the n =0
discrete carrier component. The gaussian shape of each convolution term is now
exact rather than approximate, and it is wup to the distribution of the weighting
coefficients to render an approximately gaussian spectrum from the superposition
of exact but distinct gaussian spectra. This case clearly  illustrates that it
does not suffice to have each of the spectral convolutions converge to a gaussian
shape via the central limit theorem. These distinct gaussian shapes must still
be weighted and superimposed to yield a single gaussian representation which 1is
not an automatic result (DeRosa, 1976).
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SECTION 3

RECTANGLE CONVOLUTION PROGRAM FOR FM SPECTRUM SIMULATION

The previous sections have shown that the gaussian spectral approximation
for FM signals remains to be validated insofar as the modulation index
constraints and the baseband spectrum dependence is - concerned. A possible
approach consists of comparing the gaussian spectrum to the actual FM spectrum
obtained from theoretical, simulation or empirical results.” One tractable case
that features a -compact theoretical formulation. compatible - with = computer
simulation implementation is considered in this section.

The case in question consists of a lowpass rectangular baseband spectrum
that phase modulates the sinusoidal carrier. This case corresponds to a
parabolic frequency modulating spectrum, so that it can represent a rectangular
baseband spectrum followed by a parabolic preemphasis characteristic in FM
applications. The normalized phase modulating spectrum is given by sy(f) = /W
for If]l < W/2, and the interest is to derive the n-th order convolutions Cn(f) of
this spectrum, so as to form their weighted superposition with the coefficient
distribution governed by the rms phase deviation assumed.

A computer program Wwas developed at NTIA to imulate the compact
mathematical formulation representing the n-th order spectral convolutions C,(f).
There is no need to simulate the actual convolution operations, as exact
expressions for Cn(f) are available in an iterative form for any (n) value. The
computer simulation only requires the development of effective algorithms to
implement the iterations involved, and to generate the (ap) weighting
coefficients so as to form the ZIa,Cn(f) superposition representing the FM signal
spectrum. The gaussian spectral approximation of (5) was also implemented so as
to compare it to the actual FM spectrum obtained.

THE RECTANGLE CONVOLUTION PROGRAM PRINCIPLES

A transformation to a unit width rectangle (W = 1) defined over the unit
interval (0, 1) is convenient to exploit available theoretical results. If the
n-th order convolution function obtained under these conditions is denoted by
Fp(£f), with n=1 corresponding to the initial rectangle, then the transformation

1 , . |
Ca(£) = = Fy (—5—+ -f;-) - (7

yields the convolution functions of interest. The argument shift by n/2 centers
all the Fp(f/W) functions at the origin, and the scaling of the frequency
variable and the function magnitude removes the unit width premise.

The Fp(f) functions span the (o, n) interval and exhibit a peak at f = n/2,
since they represent n~th order convolutions of a wunit rectangle. The Fp(f)
functions can be ?esomposed into wunit width segments as shown in Figure 2, and
the notation Fn-k’(f) i$ used to denote the k-th segment of the n-th function
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where 1 £ k <n. The motivation for this ’decompositiOn is that there exist
compact expressions for the Fy (k)(f) segments, with an iterative formulation
over (k) and (n) that can be exploited in a computer 31mulation to generate an
entire function from one segment (k iteration) and to superpose the weighted
functions to obtain the spectrum (n iteration).

The‘general »eXpression for an arbitrary k-th segment (1 <k <n) of an
arbitrary n—th function (n 2 1) is glven by (Cramer, 1945):

* k-1 SR , :
) - —2— X (1) (3‘) C(E-iPt kLK E<K (8)
(l’l—l)! j:o

and the segment iteration over (k) follows as

| K
g (64 gy P (k) gy 4 ( 1))' ( ) (f- k)n_ (9)
. 1

The wvalidity of these formulas was verified by independently evaluating the
first few convolution functions to match, and then performing induction proofs
over (k) and (n) to check the general expressions. The formulas reproduced the
convolution functions in question, and the induction relation was verified using
binomial coeffic1ent properties (Feller, 1968)

The F,(f) functions are symmetric about their peak at f = n/2, so there is
only need to evaluate the segments on one side of the peak to generate the
function. The evaluation was performed by developing a digital computer program
that simulated the formulas and produced point samples of one-half of each
function. = The program also included the appropriate shifting of these samples to
both sides of the origin, so as to deliver the symmetric left and right samples
needed to generate the G (£) functions centered at the origin.

The weighted superposition of the C,(f) functions as shifted versions of the.
F (f) functions can be accomplished in two ways. One approach consists of first
generating the entire shifted functions and then adding them on a weighted point
basis. This method requires careful selection of ‘the sampling points in the
unshifted F,(f) functions to assure the overlap of the shifted samples from
different 'functions,  Another approach consists of first fixing the shifted
sample points and only adding the specific weighted samples needed from each
unshifted function. " '

Both methods were investigated for computer simulation, and the first one
was implemented in the program. An effective overlap of the shifted samples from
different functions was provided by taking an even number of samples = per segment
in the unshifted functions. The peak of the unshifted functions lies at the
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middle of the midsegment if (n). is odd and at the boundary between two symmetric
midsegments if (n) is even. - The use of an even sampling rate per segment assures
the peak coverage regardless of  whether (n)- is odd or even, and the shifted
sample overlaps become assured when the peak overlaps are provided.

The weighting coefficients ap were generated by the program for a given rms
phase deviation (B) wusing the poisson distribution formula. The number of
coefficients needed was established according to TABLE 1 as a function of B for a
given power preservation criterion. The n = 0 carrier component with magnitude
exp (-B<) was independently evaluated, since the weighted superposition algorithm
excluded such discrete component to avoid the impulse simulation. A dB
transformation of the discrete and continuous spectral magnitudes was also
implemented. '

THE RECTANGLE CONVOLUTION PROGRAM RESULTS

The results of the simulation program just described are presented in this
section. The normalized FM spectral densities for various B-values are shown in
Figures 3(a) to 3(f) with linear scale and in Figures 4(a) to 4(f) in dB scale.
The first set of figures illustrates the variation of the FM spectrum from
rectangular to gaussian shape as B8 increases, while the second set serves to
discriminate the spectral tail magnitudes obtained. The rms phase deviation. is
given by B radians, and the carrier component magnitude of - B2 logqge dB is
indicated in all plots.

The number of spectral convolutions (series terms) employed was selected
according to TABLE 1 to provide a 99 percent power preservation in the
FM spectrum. A minimum of five convolutions was performed for those cases where
less would have sufficed. The effectiveness of the procedure was also verified
by performing more and less convolutions than required, and verifying that no
significant differences were obtained with the extra convolutions.

Some typical verification results are presented in Figures 5(a) and 5(b),
where the nominal number of convolutions required is indicated in the legend. A
smaller number of convolutions proves to be insufficient for the nominal
reproduction, whereas a larger' number matches the nominal reproduction in the
significant spectral region. The differential effects of the extra convolutions
appear in the spectral tail regions as evidenced by the dB plots of Figures 6(a)
and 6(b).

The interest is to compare the gaussian spectrum approximation to the FM
spectrum obtalned via the spectral convolution series. The baseband phase
modulating spectrum has the normalized form (f) 1/W for |f’§W/2, from which
the rms  bandwidth  follows as Bg= w//T§¥ Hence, the gaussian spectrum
approxlmation has a standard deviaton given by o =§. B =gW/ v12, so that the
gaussian formula (5) becomes

s (6) = = @wyleceeen? | (10)
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This expression can be compared to the spectral convolution series
simulation by setting W=1. The comparison results are presented in Figures 7(a)
to 7(1), which show that the gaussian approximation is still poor at B8 =1 but
has become effective before B = 2 is reached. The corresponding db differential
between each pair is also presented in Figures 8(a) to 8(1), where the plots show
10 log (yl/yz) with (yl) as the gaussian spectrum approximation and (y;) as the
spectral convolution series. Hence, a negative dB differential in these plots
implies that the series spectrum exceeds the gaussian spectrum by that amount.
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SECTION 4

GENERALIZED FM SPECTRUM GENERATION PROGRAM

The rectangle convolution Pprogram results are limited to the baseband
modulation case considered. The existence of a wider variety of baseband spectra
and preemphasis characteristics in practical applications motivates a more
generalized FM spectrum simulation capability. The interest is to provide for
baseband spectral shaping and parametric assignment control by the user, and the
compromise is that a compact mathematical formulation of the spectral convolution
terms is no longer available. The computer program must now simulate the FM
spectrum generation process itself, rather than implement available expressions
as done in the rectangle convolution program.

The assumption of gaussian statistics in the baseband modulating signal
yields the general expression already given in (1) in terms of an equivalent
phase modulating process., The formulation can be adapted to represent a
generalized FM process by relating the phase-modulating power spectrum Sx(f) to
an arbitrary input baseband power spectrum Sp(f) and preemphasis power transfer
characteristic T(f). The spectral relationships are given by

Q )2 2
8¢ (£) = (W) T(£) Sy(£) = (%F—) T(£) Sy(f) (11)

where O = 27(AF) is the rms frequency deviation in rad/sec if Sp(f) = T(£) =Sy (£)
has unit power. The mean-cquare phase deviation is given by the integral of
(11), and its magnitude depends on the baseband spectrum and preemphasis
characteristic in general. For example, a uniform baseband spectrum over a
frequency range (fj, fy) results in an rms phase deviation of B = AF/Y f1fy when
no preemphasis is employed. :

The generalized FM spectrum generation procedure is shown in Figure 9. The
equivalent phase modulating spectrum Sx(f) is first developed according to (11)
for a given baseband spectrum Sy,(f), preemphasis characteristic T(f) and rms
frequency deviation AF. The correlation function Ry(t) of the phase modulating
spectrum is next obtained via an Inverse Fourier Transform, and used to evaluate
the equivalent correlation function ry(t) of the modulated signal according to
the exponential transformation in (1), The spectrum s.(f) corresponding to this
function is then obtained via a Direct Fourier Transform to generate the
equivalent lowpass spectrum of the FM signal.,

A computer program was developed at NTIA to simulate the FM spectrum
generation of Figure 9. The progranm essentially involves the simulation of an
input spectrum and four processing blocks. The input spectrum represents the
nominal baseband spectrum without preemphasis, and one of the processors performs
the preemphasis conversion of the baseband spectrum into an equivalent phase
modulating spectrum. The other processors perform the direct and inverse
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transforms involved, as well as the exponential transformation that simulates the
modulation effect.

The continuous Fourier Transforms must be replaced by their discrete
versions for computer implementation. This dimplies that a time-limited plus -
band-limited signal modeling is being provided, which represents a departure from
the continuous case and requires careful accounting of distortion and aliasing
effects. A systematic procedure was developed to select the number of samples
for an effective discrete representation in either time or frequency domain. The
procedure can handle general unknown functions where only pulse width and
bandwidth measures are provided, as well as typical test functions where specific
parametric formulations are available.

A Fast Fourier Transform algorithm was employed for the Discrete Fourier
Transform realization. An existing in-house subroutine was analyzed and adapted
by the addition of a special purpose driver dedicated to deliver the input
samples in a manner convenient for spectral analysis purposes. A menu of test
signals with their corresponding discrete formulations was developed to validate
the transform computation under various pertinent conditions (e.g., lowpass and
bandpass spectra, finite or infinite pulse widths and bandwidths). The
theoretical results were reproduced accurately in all cases, with only the ideal
retangular shapes requiring careful handling to accommodate the instantaneous
discontinuity effects. The use of weighted mixtures of the test functions was
also employed to simulate arbitrary spectral conditions and further validate the
transform algorithms, by verifying that the mixture output corresponds to the
weighted superposition of the individual output results.

DISCRETE FOURIER TRANSFORMS

The Discrete Fourier Transform (DFT) consists of a direct and inverse
transform pair employed to relate the discrete-time and discrete-frequency domain
representations of signal waveforms. The DFT provides for an  accurate
approximation to the continuous Fourier Transform pair, and permits its practical
computation via digital computer algorithms. The Fast Fourier Transform (FFT)
represents a modern efficient algorithm employed to compute the DFT.

A finite number (N) of samples is involved in the discrete time and
frequency representations of the DFT. This implies that a time-limited plus
band-limited signal characterization is always provided. This represents a
departure from the continuous fourier transform, where a signal cannot be limited
in both the time and frequency domains simultaneously. The number of samples
employed must be carefully selected to assure an adequate representation when
signals with an infinite domain in time or frequency are under consideration.

The direct and inverse DFT pair is specified by the formulas:

N-1 N-1 nk
S(n) = z R(k) exp [-j(27/N)nk] = Z R(k) Wy (direct) (l2a)
k=o =0

and
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=2
1]
—

N=1 -
R(k) = < S(n) exp [+j (2r/N) nk] = Lop stwy "™ (toverse) (12b)

=]
Il
o

n=o

where R(k) represents the discrete-time  samples, S(n) represents the
discrete-frequency samples, and Wy =exp [-j (27/N)] 1is noted to vary with the
sample size (N). The same number of samples is employed in both the time and
frequency domain representations.

The time samples R(k) and the frequency samples S(n) can in general be
complex valued. The complex conjugate R*(k) of the time domain sequence can be
verified to be identical to the direct DFT of the complex conjugate S*(n) of the
frequency domain sequence, except for the presence of a (1/N) scaling factor.
This permits the evaluation "of the inverse DFT as a direct DFT with simple
modifications as shown in Figure 10(a). The last conjugation can obviously be
omitted for the case of real samples in time. Moreover, a real even symmetry in
time implies a real even symmetry in frequency, and then the inverse DFT reduces
to a direct DFT with (1/N) scaling as shown in Figure 10(b). This last case is
of particular interest when evaluating autocorrelation and power spectral density
functions of real signals, since these functions exhibit a real even symmetry
about the origin in both time and frequency domains.

An inverse DFT is employed in Figure 9 to obtain the discrete correlation
function Rx(k) from the discrete power spectrum Sy(n). The latter represents the
samples from its continuous counterpart Sx(f), but the correlation values Rx(k)
obtained via (12b) must be multiplied by N°*Af to represent samples from the
continuous correlation function Ry(t). This effect is a consequence of the
incremental spacings being implicit in the DFT summation versus explicit in the
continuous transform integral.

A similar effect occurs when using the direct DFT in Figure 9 to obtain the
discrete power spectrum sy(n) from the discrete correlation function r (k). The
latter represents the samples from its continuous counterpart ry(t), but the
spectral values sy(n) obtained via (l2a) must be divided by N*Af to represent
samples from the continuous power spectrum sy(f). Notice that this division by
N-Af does not cancel the above multiplication by NeAf since there is the
nonlinear exponential transformation separating these effects in Figure 9.

The inclusion of these scaling factors is necessary to maintain dimensional
analogy with the continuous signal representation. The net effect insofar as the
simulation logic is concerned is shown in Figures 1l(a) and 11(b). The inverse
continuous transform is realized by a direct DFT plus a Af multiplier, which
corresponds to the inverse DFT with a N.Af multiplier. The direct continuous
transform is realized by a direct DFT with a NeAf divider, and the generation of
dB/Hz spectral units only requires taking 10 log (*) of the DFT output data and
subtracting the constant 10 log (N°+Af).

NUMBER OF SAMPLES

The number of samples (N) employed in the DFT must be sufficient to provide
an effective representation of the continuous time and frequency functions
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at £ = n.Af

Figure 11(a).

Inverse Transform Simulation with Dimensional Analogy.
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(At-Af = 1/N is always satisfied in the DFT)
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Figure 11(b).
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—»

1
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Direct Transform Simulation with Dimensional Analogy.
(At.Af = 1/N is always satisfied in the DFT)
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involved. The fact that the same number of samples is used in both domain
representations implies that the selection rationale must jointly provide enough
time spread and spectral occupancy to cover the effective pulse widths and
bandwidths involved. : - ‘

A standardized procedure was developed to logically select the number of
samples (N), and is applicable regardless of whether the direct or inverse DFT is
being computed. The procedure can handle general unknown time or frequency
functions where pulse width or bandwidth measures are the only available
information, as well as specific functions where detailed parametric formulations
are assumed as models. In particular, the procedure was designed to handle
even-symmetric functions (autocorrelation, power density) based on the immediate
application of interest here.

Consider an even-symmetric input function with a one-sided effective width
measure (Win)' The input function will be assumed in the time domain for
formulation purposes, without 1loss of generality since we only need to
interchange the time (t) and frequency (f) variables otherwise. The number of
input samples (N) needed to cover the input with a uniform incremental spacing
(At) then satisfies N(At) = 2 Win. The relation (At) * (Af) = 1/N is inherent in
the DFT definition, and relates the input and output incremental spacings.
Hence, a given number of samples (N) corresponds to input and output increments
of At = 2Win/N and Af = 1/2W;,, and the net output width coverage capability is
given by N(At)/2 = 1/2W;jp (one-sided). This last amount must exceed the
(one-sided) effective output width measure (Wout)’ which yields the requirement
of N 2_4 (w.n) (wout) for the sample number selection. Note this condition is
symmetric in its joint accounting of the time and frequency domains (pulse
widths, bandwidths) as should be the case. :

The selection of a baseband input spectrum is first wused to establish a
lower bound on the number of samples required. An input bandwidth measure is
available from the spectral shape, and the associated pulse width measure can be
obtained from its corresponding correlation function. This minimum number of
samples 1is obviously insufficient for the ultimate FM output spectrum
representation, since the bandwidth expansion effect must be accounted for. The
bandwidth expansion can be estimated using Carson's Rule or other FM bandwidth
measure selected, and the corresponding increase in the number of samples

required becomes specified.

The baseband input spectrum S, (f) of Figure 9 was simulated to approximate a
rectangular shape with selectable low and high cutoff frequencies. A noncentral
Butterworth spectrum family was employed for this purpose, with the cutoff rate
(spectral tail decay) carefully selected to assure that an effective
approximation to the ideal rectangle effects are preserved through the spectral
transformations of (11) leading to the equivalent phase modulating spectrum Sx(f)
in Figure 9.

The selection of a Butterworth spectrum instead of an ideal rectangle for

simulation purposes was motivated by practical DFT representation considerations.
The step discontinuities of an ideal rectangle hinder a discrete simulation,
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since the sampling logic must account for the unavoidable ringing distortion.
Moreover, the Butterworth discrete formulation provides for a free parameter that
can be conveniently employed as a bandwidth expansion designator to automatically
accommodate the increase in the number of samples required as the baseband input
spectrum generates the FM output spectrum.

BUTTERWORTH BASEBAND SPECTRUM SIMULATION

A noncentral Butterworth spectrum family represents a wuseful approach for
the simulation and shaping of the baseband power spectrum. The noncentral
Butterworth family can provide control of a variety of spectral features (center
location, bandwidth, cutoff rate) with a compact formulation, as well as
approximate a uniform distribution over some arbitrary low (f1) and high (fy)
frequency range.

The continuous noncentral Butterworth spectrum is specified by the
three-parameter family given by

1
Sb(f)s s

(f—fo) (13)
1+
fr

where f, = (1/2) (fy + f1) is the center location, £, = (1/2) (fh - £,) is the
one-sided 3 dB bandwidth from the center (with the approximation holding for P
large), and P 2.2 is an even integer that governs the cutoff rate of the spectral
tails beyond the 3 dB breakpoints. The spectral shaping is controlled by the
user via the (f,, f,, P) parameters, and the spectrum approximates an ideal
rectangle as P increases, with the bandwidth occupancy approaching f, as a lower
bound.

A band-limited reproduction of the Butterworth bandwidth occupancy requires
a spectral coverage that extends beyond fo + £4., which can be gpecified as
N(Af) = 2 (f +Mf ) in a discrete representation with N samples The parameter
M2 1 serves to establish the effective bandwidth measure as Mf ., while
maintaining a bandwidth definition flexibility. For example, M =1 corresponds
to the 3 dB bandwidth, while 1 < M < 1.57 corresponds to the equivalent noise
bandwidth which varies with the P value.

The correlation function corresponding to a given Butterworth spectrum
varies in shape according to the P value. For example, P = 2 yields an
exponential pulse, while a large P approximates a sinc pulse in the limit. The
number of samples (N) must span the effective pulse widths in each case, with the
relation N (At) - (Af) = 1 used to establish the sample size requirement. For
example, the sinc pulse has zero crossings spaced by (2Mfr)'l so that a one-sided
coverage of K zero crossings requires N (At) > K/(MFr) or N > 2K (fo + Mfr)/(Mfr)°

It is convenient to define the parameter Q = f,/f,, so that the set (M, N,
P, Q) represents the spectral design parameters in the discrete representation.
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The rectangular spectrum and sinc pulse coverage then implies N > 2K[(Q/M) + 1]
where Q z (fy + fl)/(fh - £1) for large P values. For example, the range of (fq1,
fy) values employed in FDM/FM telephony for satellite communication applications
corresponds to a practical range of 1 < Q< 2 for spectral representation
purposes. '

The discrete formulation of the Butterworth spectrum family is specified by

1
Sp(n) = P
) w

where the other remaining samples for N/2 < n < N-1 are obtained as mirror images
of those above due to the even symmetry of the power spectrum. A typical set of
the discrete Butterworth spectra obtained via the program simulation based on
these formulas is illustrated in Figure 12. The case of Q =M = 1.5 was
arbitrarily selected since it is representative, and the condition Q = M yields a
center location at n = N/4 which is easy to verify.

for 0 <n < N/2 (14)

The discrete correlation functions corresponding to various Butterworth
spectra were obtained via the inverse FFT for further validation.- Some typical
results are shown in Figures 13(a) to 13(h), where the P = 10 and P = 100 cutoff
cases are considered wunder varying central (Q = 0) and noncentral (Q # 0)
conditions. These P values are large enough so that the nominal correlation
functions effectively approximate those corresponding to the case of ideal
rectangular spectra.

On this basis, the total area (power content) under the continuous
Butterworth spectrum is given by A = 2f .(sinc 1r/P)"l = 2fr for the central
(Q = 0) cases, and by twice this amount for the noncentral (Q#0) cases. These
values also represent the continuous correlation function peaks at the origin,
which can be formulated in the discrete representation as

A, = 1 = 1 for Q=0 (15a)
M sinc (m/P) M
and
2 2

o= TQ+M sinc (7/B)  qawm for 2#0 (15b)

These theoretical results can be verified to hold in all the simulation
plots for the discrete correlation function peaks. The actual functional
dependence can also be verified by noting that the nominal continuous correlation
functions are given by Ry(t) = A sinc (2mf,t) for the central (Q = 0) cases, and
by Ryp(t) = 2A sinc (2mf,t) cos (2mf4t) for the noncentral (Q # 0) cases. These
expressions have discrete formulations given by
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Rg(k) = A sinc ( if )'for Q =’0 - o , R (16a)

and

Rb(k) = A sinc (QEQ;E) * cos (a—%;%%——)‘ for Q #0 ' (16b)

Hence, the theoretical results predict that the zeroes of the discrete
correlation function should occur at k = M, 24, 3M . . . for the Q = 0 cases,
and at k = (Q + M), 2(Q + M), 3(Q + M). . . plus k = (1/2) [(Q + M)/Q],
(3/2) [()/Ql, (5/2)[(+M)/Q]. . ~+ for the Q # 0 cases. .This behavior can
indeed be verified in all the plots, and  also that some of the zeroes are
starting to exhibit a slight shift for the P = 10 cases relative to their P = 100
counterparts.

PREEMPHASIS AND FM/PM CONVERSION SIMULATIONS

The baseband input spectrum Sp(£) is modified by the preemphasis
characteristic T(f) and by the FM/PM conversion effect (AF/f)2 to become the
equivalent phase modulating spectrum Sy(f) of Figure 9. The use of a Butterworth

baseband input must be verified to yield an effective Sy(f) spectrum .

representative of that obtained with an ideal rectangular baseband. In
particular, the Butterworth cutoff rate (P) nust be sufficiently high to overcome
the low frequency overshoots caused by the (AF/f)2 processor in the discrete
program simulation. R : _

The CCIR preemphasis network recommended for FDM/FM telephony applications
has a voltage transfer characteristic given by (Panter, 1972).

1+ k’lkz’(s'/mr)+ ("s/cor)2

V(s) =k, ., (17)

kiky

Tk,

. 2
1+ (s/@) + (s/w)

where k 2= 0.4, kq = 1.81, k; = (1/0.79),w, = 1.25 wy, and wy= 2nfy is the high
baseband frequency in the rectangular spectrum  model.’ The corresponding power
transfer characteristic can be readily evaluated as T(f) =-[V(2njf)r2to yield the
following: - o ‘ : '

, 1+ 2.0796(f/£h)2 + O.4096(f/fh)4 , .
T(f) = (0.4) + ' ) (18)
‘ 4

1 - 0.8545(f/fh)2 + 0.4096(£/£, )
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This expression was simulated and tested with a uniform discrete input
extending from zero to an arbitrary high frequency (fy). The input was then
modified to start at an arbitrary low frequency (f1), thus simulating a
rectangular baseband with low and high cutoffs. The preemphasized baseband
spectrum is shown in Figure 14 where the abscissa has kHz units. The cutoff
points agree with their predicted values in magnitude (T(f1) = 2.5 and T(fy) =
0.4) and location:

- Q+1 N -

fh= QT 3 = = (512) = 426.66 (kHz) (19a)
_ Q-1 N —

1T Q+M 2 -%—-(512) = 85.33 (kHz) (19b)

The FM/PM conversion effect (AF/f)2 was next simulated, and its response
when cascaded with the preemphasis characteristic was tested. The rectangular
baseband spectrum with the same cutoff frequencies was used along with AF = 800
(kHz units), and the output spectrum obtained is shown in Figure 15. The low and
high cutoff locations are maintained as expected, and their max/min galues can be
noted to agreg with the predicted values of T(fy) ° (AF/ £,)° = 38.28 and
T(fh) . (AF/fh)»= 8.79.

The discrete Butterworth spectrum was then used as the input (instead of an
ideal rectangle) into the preemphasis and FM/PM conversion cascade. All the
parameter values remained as above, and the output spectra obtained for different
P-values is shown in Figures 16(a) and 16(b). A comparison with the ideal
response of Figure 15 shows that some significant distortion below the low
frequency cutoff (f1) can be introduced if the P - value is only moderately high
as in Figure 16(b). Conversely, the ideal response becomes essentially
reproduced in Figure 16(a) except for some slight attenuation at the low
frequency edge. The use of P 2_50 is thus motivated when using the Butterworth
spectrum to simulate an ideal rectangular baseband spectrum.

The CCIR preemphasis characteristic (18) is expected to preserve the rms
frequency deviation with or without preemphasis for a rectangular baseband input
(Panter, 1972). This condition implies that the power content (areas) under the
Sb(f) and S_(f) = T(f) . Sy, (f) spectra are identical in principle. It is
convenient to normalize the spectrum Sp(f) by its power content, since then the
AF parameter represents the rms frequency deviation. Hence, the normalization
factor can be taken as the power content of Sy(f), which is given by

R

- 2(fp-f1) .
Py =

. 2(fy, - £q) ' (20
sinc(m/P) b 1 )
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Figure 15. Equivalent Phase Modulating Spectrum with Rectangle Input
(Q =M= 1.5, N = 1024)
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FDM/FM SPECTRAL SIMULATION RESULTS

, The FM spectra obtained as outputs of the generalized simulation program are
presented in this section. The -input -baseband ~ spectrum consists of discrete
samples from a noncentral Butterworth characteristic with P = 100. This input
simulates an ideal rectangular baseband Syp(f), while preserving its equivalent
phase modulating spectrum = S _(f) after preemphasis. The baseband_ cutoff
frequencies are arbitrarily - selected as fy = 426.66 kHz and f; = 85.33 kHz to
illustrate the results. These values yield a representative Q = 1.5 and match
the examples used in the last two sectionms.

The number of samples employed is established from the coverage condition
N(Af) 2 (fo+ MEL) = 2(Q + M)fr, where = (1/2) (fn + f1) and: f, = (1/2)
(fp - £7). This condition can be rewritten as N(Af) =M+ 1)fp - (M-1)f,, where
the user selects the parameter M > 1 to provide enough bandwidth coverage. For
M ® 1; the baseband input spectrum is just covered without any extra margin. The
use of larger M values then provides for the additional coverage needed to
account for the FM  bandwidth expansion. For example, a coverage of
N(AEf) = M(fy, - £7) is provided for M > > 1, which represents a bandwidth

expansion margln of about M(fh - fl)/(2fh)

The rms multichannel frequency deviation AF was varied from 42.66 to
- 2133.33 kHz,  so as to span an . equivalent modulation index range of
= (AF/fyp) = 0.1 to 5 radians. This index - (m) is often referred to as the '"rms
- modulation index", but should not be confused with the rms phase deviation (B)
. given by the root integral of (11). The critical implications of this
distinction are discussed in the next section. A bandwidth expansion margin of
'about 0.4M occurs with M large, and the values of Q = 1.5, M = 46 5, N = 8192 and
Af = 2 kHz were used in the results next presented.

The FM output Spectra obtained are shown in Figures 17(a) to 17(h), except
for the discrete carrier component at f = O which is identified in the legend.
The carrier magnitude was obtained from the 1limiting value of the correlation
function r_(t) -  the  modulated signal, as specified - from the sample value
r.(n/2) 1% the discrete representation. The gaussian spectral approximation with
sZandard deviation o = AF is also included for each case. The  spectral
characteristic and cutoff frequencies of Figure 16(a) .can be observed in the FM
output spectra for the low index eases. The gaussian representation can be noted
to be valid for the moderate or high index values as expected, with the

transition occurring around m = 1 radian.

The generalized FM spectrum program was also wused to obtain the normalized
power spectra of various FDM/FM satellite telephony systems. The results are
shown in Figures 18(a) to 18(1), along with the gaussian representation obtained
with o = AF for each case. The systems can be noted to span a wide variety of
baseband modulation parameters (f;, fp, AF) corresponding to a range of
0.1 <m < 5, with the gau381an spectral transition ‘being evident as the index
increases.
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FDM/FM Spectrum for m = 1.0

(residual carrier = -15.T41 dB)..
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Figure 17(e). FDM/FM Spectrum for m = 2.0
(residual carrier = -62.96) dB).
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Figure 17(f). FDM/FM Spectrum for m = 3.0 _
(residual carrier = -141,669 gB).
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Figure 17(g). FDM/FM Spectrum for m = 4.0
(residual carrier = -251.857 4dB).
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Figure 18(a). FM Spectrum of 1800-Channel Bell TD2 System
(f1=564 kHz, f,=8524 kHz, AF=328.5 kHz,
m=0.0385, residual carrier .= -0.050 dB)
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Figure 18(b). FM Spectrum of 2400-Channel Bell TH System
(f1=564 kHz, fh=11596 kHz, AF=779.0 kiz,
m=0.0672, residual carrier = -0.199 dB)
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(£1=564 kHz, fy=T284 kHz, AF=722.5 kiz,
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m=0.335, residual carrier = -3.320 dB)
(Note: carrier energy dispersal omitted)
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Figure 18(f). FM Spectrum of 1200-Channel AT&T System
(£1=56L4 kHz, f,,=5772 kHz, AF=2807.0 kHz,
m=0.486, residual carrier = -5.858 dB)
(Note: carrier energy dispersal omitted)
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Figure 18(i). FM Spectrum of 360-Channel Western Union System
(£,=60 xHz, £ =1550 kHz, AF=1250.0 kHz,
m=0.806, residual carrier = -36.108 4B)
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The normalized power spectra of some of ' these FDM/FM systems have also been
presented in a recent FCC document (Sharp, to be published). They were obtained
via different simulation principles and procedures than those used here, and the
results are included in Appendix B for comparison purposes. The cases presented
have the following counterparts in this report:

COMSTAR 360 corresponds to Figure 18(g)
COMSTAR 600 corresponds to Figure 18(h)
COMSTAR 1200 corresponds to Figure 18(f)
TELSTAR 1800 corresponds to Figure 18(e)
WESTAR 120 corresponds to Figure 18(1)
WESTAR 180 corresponds to Figurel8(k)

The first four cases all represent low-index modulations, and there is
notable agreement with their counterparts in this report. The only distinction
appears in the low-frequency peak being slightly higher in the FCC simulation,
which is attributed to the higher peak in the preemphasized baseband spectrum
when using an ideal rectangle instead of a Butterworth baseband as previously
discussed. The last two cases represent higher-index modulations, and there is
again general agreement between the two simulation results though the reference
spectra are somewhat lower than their counterparts in this report. The
discrepancies can be attributed to a higher spectrum arising from aliasing
effects in the NTIA model, or to a lower spectrum arising from convolution series
truncation in the FCC model. The distinction becomes academic, since the same
gaussian spectral approximation holds well and is to be used in these
higher-index cases. ' '
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SECTION 5

SUMMARY AND DISCUSSION OF RESULTS

The gaussian spectral approximation for high-index FM signals can be’
motivated in two ways, with a gaussian baseband modulation: process of arbitrary
spectrum being always assumed. - One approach relies on Woodward's theorem, and
identifies the limiting spectrum to the statistical distribution of the frequency
modulating signal thus inducing the gaussian representation. The other approach
uses Middleton's expansion to .develop a weighted superposition of spectral
convolution terms, which is manipulated into - a gaussian approximation under high
modulation index conditions.

The standard dev1at10n (0)- of the gaussian spectral approximation represents
the rms bandw1dth of the modulated signal, and must be specified in terms of the
modulation parameters for . the spectral representation. - The first approach
(Woodward's theorem) yields o =AF in terms  of the rms frequency deviation (AF),
while the second approach (Middleton's expansion) yields ¢ = B.B, in terms of the
rms phase deviation (B) and the rms bandwidth (Bx) of . the -equivalent phase
modulating signal. These two formulas are not always easily interchangeable,
with the selection between them ' governed by the. capablllty to quantitatively
identify the parameters involved in each case..

The inclusion of a preemphasis network becomes ‘a critical consideration,
since it can be designed to preserve the rms phase (B) or frequency (AF)
deviation but not both in general (and perhaps neither in a given application).
For example, an ideal preemphasis characteristic (parabolic power transfer) makes
the preemphasized FM baseband behave 1like a PM baseband so that g = 3By becomes
the natural approach. Conversely, the CCIR preemphasis for FDM/FM telephony
preserves the rms frequency deviation and motivates using 0 = AF to specify the
gaussian spectrum parameter (Panter, 1972).

The rectangle convolution program was developed to analyze the gaussian
spectral representation based on Middleton's expansion. The case of a
rectangular baseband spectrum (down to zero frequency) and ideal preemphasis
yields compact iterative expressions for the spectral convolution terms, thus
bypassing the need to actually simulate the multiple convolution operations.
These expressions were logically programmed along with the weighting coefficient
distribution to generate the FM spectra as a function of the rms phase deviation
(B). The number of spectral convolutions accounted is user selectable to provide
any desired power preservation percentage. The results concluded that the
gaussian spectral representation with 0 = B+By becomes effective beyond B % 1.5
radians for the baseband modulation under consideration.

The generalized FM spectrum program was developed to analyze the gaussian
spectral approximation based on Woodward's theorem. A rectangular baseband
spectrum with low (f7) and high (fy) cutoffs was simulated via a noncentral
Butterworth family that provides user selection of the location frequencies and
cutoff rates, plus a spectral coverage parameter that accommodates the FM
bandwidth expansion and controls the discrete representation aliasing. The
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program again bypasses the multiple convolutions simulation by exploiting
correlation function dependences and including discrete spectral transforms as
needed. The gaussian representation with o = AF was found to be become effective
beyond m =AF/fy ~ 0.7 in both controlled parameter tests and existing systems
simulations. ‘

The normalized carrier component is always given by —82(10 log e) dB in
terms of the rms phase deviation (B), so that the latter must be specified for a
compact formulation (except for the 8 values where the carrier component becomes
negligible). The rectangular baseband spectrum with low and high cutoffs yields

B= m/y/Ewithout pPreemphasis, where ¢ = £1/£, <1 so that B> m always. The
CCIR preemphasis case does not yield an exact compact result, but an effective
functional approximation to the preemphasis characteristic has been used to
develop the approximate relation (CCIR, 1978);

g ~ _0.63m

Ve(l-€)

[1+2.89¢-3.17¢2-0.72¢4]1/2 ; (21)

A comparison between the normalized carrier component derived from this last
expression and those obtained via the generalized FM simulation program is
presented in TABLE 2. There is close agreement between the two results in all
cases, including the 18(g) case where a large (m) relative to 18(e) or 18(f) is
not accompanied by a larger (B) and the carrier magnitudes increase accordingly
in both results. The functional approximation to the preemphasis characteristic
was also compared to the actual characteristic (18) and found to overlap even
under extreme (f 1, fw conditions representative of existing system
specifications. ‘ : ‘

The ratio B/m obtained from (21) represents the conversion factor needed to
determine the rms phase deviation (B) from the index m = AF/fy. This conversion
factor is shown in Figure 19 as a function of € = f1/f, . The parameter ¢ spans
the range of 0.001 < €< 0.275 in existing system specifications, which
corresponds to a range of 20 > B8/m > 1.75 for the conversion factor. The latter
remains around B /m~ 2 for E > 0.T, but increases significantly for € < 0.05 as
shown in the figure.

The conversion factor B/m can be used to directly formulate the residual
carrier component via =-82(10 log e) dB, instead of deriving it from the
correlation function measurement. The formula approach is preferable since the
extreme baseband cases (e<<1) can introduce a simulation compromise between
incremental resolution (Af small) and aliasing control (N*Af large) that can
affect the carrier measurement accuracy. The generalized spectrum program has
now been modified to compute the carrier magnitude directly from the rms phase
deviation (B), after such parameter is computed via (21) from the input baseband
cutoffs (f. , %]) and the rms frequency deviation (AF).

The following procedure has now been implemented to generate the FM spectrum
for given modulation parameters (fy, fy» AF). The values of m = F/fn and
e= fl/fh are first computed to obtain the rms phase deviation (B) from the
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TABLE 2

RESIDUAL CARRIER MAGNITUDES IN FM SPECTRA

Residual Carrier (dB) Residual Carrier (dB)

Figure m(rad) B(rad) Formulation - Simulation:
17(a) 0.1 0.19 -0.16 -0.16
17(b) 0.33 0.63 -1.73 : H -1.75
17(c) 0.5 0.95 \ -3.90 - =3.94
17(d) - 1.0 1.90 -15.60 ; =15.74
17(e) 2.0 3.79 -62.39 ‘ -62.96
17(£) 3.0 5.69 -140.38 -141.67
17(g) 4,0 7.58 -249,57 -251.86
17(h) 5.0 9.48 -389.95 -390.00
18(a) 0.0385 0.106 -0.05 ‘ -0.05
18(b) 0.0672 0.209 -0.19 -0.20
18(c) 0.0992 0.256 -0.29 -0.29
18(d) 0.335 0.866 -3.26 -3.32
18(e) 0.351 0.966 -4.,05 =4,15
18(f) 0.486 1.154 -5.78 : -5.86
18(g) 0.500 0.877 -3.34 -3.38
18(h) 0.607 1.178 : -6.03 -6.08
18(i)  0.806 2.769 -33.30 ; -36.11
18(3) 0.916 3.356 . =-48.91 : -55.20
18(k) - 1.555 4,076 -72.17 -73.56
T 18(1) 2.120 4,844 -101.89 -103.10
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expression (21). If B>1.5 (or any other bound selected), the gaussian spectral
approximation with O =AF is used to generate the continuous portion of the
spectrum. If B<1.5, then the generalized spectrum = program is used to generate
the continuous portion of the spectrum. In either case, the residual carrier
component is generated as fB (10 log e ) from the rms phase deviation (B) already
computed.

The generalized spectrum simulation program is now operational and automated
to deliver the FDM/FM system spectra from a set of equivalent modulation input
parameters selected by the user. The program first decides on the gaussian
spectral approximation validity, computes the gaussian standard deviation if such
approximation is indeed valid, and generates the appropriate gaussian spectrum
samples. Otherwise, the program negates the gaussian spectral representation and
proceeds to deliver the proper spectral samples as generated by the generalized
FM simulation process.: a T . : o . ‘

The FDM/FM simulation program has also been matched to drive another existing
interference analysis program for FDM/FM telephony. The interference program
computes the output NPR per telephony channel for a given FDM/FM input spectrum
as the desired signal and a given arbitrary interference spectrum selected by the
user. The FDM/FM simulation program reported here provides for the desired
signal spectrum, and a set of interference spectral simulations are being
developed to supplement those already available from the interference program

menu.

-70-




REFERENCES

Abramson, N. (1963), “"Bandwidth and Spectra of Phase and Frequency Modulated
Waves," IEEE Transactions on Communication Systems, pp 407-414, December.

Algazi, V.R. (1968), "Bounds on the Spectra of Angle-Modulated Waves," IEEE
Transactions on Communication Technology, Vol. COM-16, No. 4, pp. 561-566,
August. :

Blackman, N.M. and G.A. McAlpine (1969), "The Spectrum of 'a High-Index FM
Waveform: Woodward's Theorem Revisited,” IEEE Transactions on Communication
Technology, Vol. COM-17, No. 2, pp. 201-207, April.

Cramer, H. (1945), “Mathematical Methods of Statistics,"” Princeton University
Press, pp. 244-246. ' ‘

CCIR (1978), Recommendations and Reports of the CCIR, Vol. IX, Report 792, Annex
I, pp367-369.

Das, A. and G. Sharp (1975), “Convolution Method of Interference Calculation,”
Federal Communications Commission, Office of Chief Engineer, Research and
Standards Division, Washington, D.C., Report No. RS 75-04, April.

De Rosa, J.K. (1976), "The Spectral Density of a Sinusoid Phase Modulated by a
Gaussian-Filtered Gaussian Process,” - IEEE Transactions on Communications,
pp. 935-938, August.

Feller, W. (1968), "An Introduction to Probability Theory and its Applications,
Vol. 1, 3rd Edition, John Wiley & Sons, Inc., pp. 50-66.

Ferris, C. (1968), "Spectral Characteristics of FDM/FM = Signals," IEEE
Transactions on Communication Technology, Vol. COM-16, No. 2, April, PP.
233-238. . . .

Jeruchim, M.C. and D.A. Kane (1970), "Orbit/Spectrum Utilization Study,"
Vol. IV, General Electric, Space Systems Organization, Valley Forge Space
Center, Philadelphia, Pa., Document No. 70SD4293, December.

Panter, P.F. (1972), “"Communication Systems Design,"” McGraw-Hill Book Company,
PP. 234-236 and 262-266. '

Pontano, B.A., J.C. Fuenzalida and N.M. Chitre (1973), "Interference into
Angle-Modulated Systems Carrying Multichannel Telephony Signals, " IEEE
Transactions on Communications, Vol. COM-21, No. 6, pp. 714-727, June.

Sharp, G.L. (to be published), "Reduced Domestic Satellite Orbital Spacings at

4/6 GHz," Federal Communications Cogmission, Office of Science and
Technology, Document No. FCC OST R83-2.

-71-



APPENDIX A

FM - BANDWIDTH AND POWER DISTORTION

The identification of a finite bandwidth measure for the FM signal spectra
implies a spectral tail truncation and a power preservation compromise. The
effectiveness of a bandwidth measure to accommodate the FM signal spectrum is
also critical from an analytical simulation standpoint. The number of point
samples involved in discrete representations is hecessarily finite, so that it
induces aliasing and distortion effects that limit the spectral analysis
accuracy. :

The approach usually employed for analog FM bandwidth assignment has been
Carson's Rule. The FM bandwidth is given by B = 2(AFp+ fp) = 2(a+l)fy, where AF
is the peak frequency deviation, a is the peak modulation index and f, is the
peak modulating frequency. This rule represents an additive combination of the
bandwidth expressions for extreme high (B = 2AFp= 20fy) and low (B = 2fp) index
conditions., One of these two expressions prevails over the other for a> 1 or
oK< 1, so that their linear superposition always yields the bandwidth measure for
extreme index conditions. : '

The distortion implications of Carson's Rule as a function of the modulation
index remains an open issue. There is no distortion measure or criterion that is
generally accepted for evaluation purposes, with the difficulties arising from
the variety of modulating signal characteristics and models that occur in
practice. The discussion that follows concentrates on power ppeservation as a
distortion measure for a deterministic (single sinewave) and random (uniform
spectrum) baseband modulation cases.

One distortion criterion is based on the magnitude of the -sidebands
preserved or rejected when band-limiting the modulated signal spectrum. In the
case of single sinusoidal modulation, the number M,(a) of significant sideband
pairs to be preserved can be established as a function of the index (a) for a
given significance level (v) from the condition _IJM(q)I 2 v where J(¢) is the
Bessel function of the first kind. The FM bandwidth measure is then given by
Bu(a) = M,(a)fy, and varies with the level () selected besides the index (a).
This bandwidth allocation procedure has been compared to Carson's Rule to show
that the latter represents an FM bandwidth assignment with a significance level
in the 0.0l <v< 0.1 range for all practical modulation indices when the
modulation is a single sinusoid.

Another distortion criterion consists of the power percentage being

preserved or rejected when band-limiting the modulated signal spectrum. For a
single sinusoidal modulation, the power percentage preserved is given by

PM(a) = J.2(a) + 2 ¥ JI; 2(a) | | (a-1)
n=1

when n = 1 to M sideband pairs are maintained. The number of pairs Mp(a) needed
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for a given power'bercentage (p) can be found from this relation, and the FM
bandwidth measure is then given by B (a) 2M_(a)fpe The normalized bandwidth
2M,(a) can be evaluated independently of Pthe modu ating frequency (fp).

The normalized bandwidth is shown in Figure A-1 for various power
percentages to be preserved. Each step function corresponds to a fixed power
percentage (p), with the solid step function representing p = 997 power
preserved. The normalized bandwidth assignment based on Carson's Rule is given
by 2(a + 1), which is represented in the figure by the solid straight line. The
rule is noted to essentially follow the p = 99% curve steps for indices in the
0.9 < a< 4.3 range. It also preserves more power at lower indices, but falls
progressively below the 99 percent power curve at higher indices outside this
range.

The case of a random modulating signal with a uniform baseband spectrum has
also been analyzed wusing preserved power as the band-limiting distortion
criterion. A peak to rms load ratio of 11 dB “has been assumed to simulate
representative conditions of FDM/FM telephony, and the resultant bandwidth
measure B (a) = 2Mg(a)f , is obtained from the following relation

' 7 3
Mq(a) = al:\/l - log (q5/ O ) - 0.05:' + 0.75

(A-2)

where q =1 - (p/100) represents the power fractlon rejected. This expression is
an effective approximation to a complicated integral formulation for moderate
index values (1 < o< 5). The normalized bandwidth 2M,(o) is shown in Figure A-2
for various (q) values, along with the bandwidth assignment corresponding to
Carson's Rule. , The latter can be noted to represent a power rejection in the
10 -lO< q <10~ -8 range, which is negligible. :

The two modulation cases analyzed here correspond to extreme distribution
conditions, in that one has all the baseband energy concentrated on a single
frequency while the other has it spread uniformly over a frequency band. The
implication of Figures A-1 and A-2 is that Carson's Rule represents a rather
effective  approach to the analog FM bandwidth assignment from a power
preservation standpoint when modulation indices below five radians are
considered. The results also indicate that Carson's Rule preserves considerably
more power when the baseband modulation has a spread rather than concentrated
spectral characteristic.
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(A.3) Medhurst, R.G. and Plotkin, S.C. (1968), "Comments on FM Bandwidth as a
Function of Distortion and Modulation Index,” IEEE Transactions on
Communication.Technology, p. 500 (June). '
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APPENDIX B

COMPARISON OF FDM/FM SPECTRAL SIMULATIONS

The following pages present a comparison of the FDM/FM normalized power
spectra generated by the FCC and NTIA spectral simulation programs. Each page
contains the simulation results for the same satellite communication system, as
obtained using both programs. The FCC simulation results correspond to the. top
graph of each page, while the NTIA simulation results correspond to the bottom
graph., '
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