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Cloudflare is a Internet security company working to build a better Internet, including
limiting the damage done by botnets. We protect more than six million web properties
around the world from Distributed Denial of Service (DDos) attacks. With over 115 data
centers in more than 50 countries, we serve approximately 10% of global Internet
requests, which is more web traffic than Twitter, Amazon, Apple, Instagram, Bing, &
Wikipedia combined. Every week, the average Internet user travels through our
network more than 500 times. In a typical day, the Cloudflare network of data centers
blocks more than 400 million DDoS attacks. This gives us a unique perspective on
where botnets are located and how they are being used to launch DDoS attacks.

Since Cloudflare was founded eight years ago, we have worked to make Internet
security easy and inexpensive so that anyone with a website can use leading-edge
technologies to ensure their visitors have a safe, secure, and reliable way to connect to
the Internet. In addition to standard web security services, Cloudflare offers emergency
protection for those in the midst of a DDoS attack, giving all users the ability to mitigate
attacks and keep themselves online.

We believe the power of innovation and cooperation can help address most of the
security issues we face today and will face tomorrow. As such, Cloudflare engineers
work closely with standards bodies, technical organizations working on network issues
and cybersecurity, and other Internet companies to identify and address cyber
vulnerabilities and limit cyberattacks.

While governments have played a key role in the development of the Internet, most of
the solutions to cyber threats come from the private sector and the technical
community. Rather than resorting to regulation or imposing one-size-fits-all standards,
governments should help foster the kind of innovation and competition that has
enabled the phenomenal growth of the Internet for more than twenty-five years. New
technologies, adoption of best practices by businesses and other organizations, smart
procurement, awareness raising, and greater transparency are the key to thwarting
botnets--not new legislation or regulation.



The key question is “How can a distributed, multi-pronged approach to botnets
convince the people running them and using them to find a new line of
work--preferably a legal one?”

Evolution of Botnet Attacks

When botnets first emerged as a problem more than fifteen years ago, almost all the
traffic was coming from compromised personal computers. Today, the situation is
much more complicated. Cloudflare data indicates that almost every major attack
exploits vulnerable corporate servers. Furthermore, cybercriminals have found ways to
exploit cloud computing services to launch attacks.

In a typical DDoS attack, a malicious party tries to make a website or web service
unavailable by overwhelming it with requests from compromised machines (called
“bots”) from around the world. If the volume of attacks from these bots is large
enough, the web server may become overloaded and unable to provide services to
legitimate clients. One way attackers generate sufficient traffic for successful DDoS
attacks is to collect and control a set of compromised machines or devices, known as a
botnet.

To increase the size of DDoS attacks even further, attackers use reflection or
amplification. In an amplification attack, the attacker uses a spoofed IP source address
to submit a query that will prompt a large reply back to the target IP address. These
attacks therefore require both an internet protocol vulnerable to reflection and servers
or internet devices that support the vulnerable protocol. Using these tools, it is very
easy for a botnet to magnify the amount of data delivered to the target twenty times or
more. Reflection attacks are relatively common; Cloudflare’s system detected a
reflection attack on average every 40 minutes, during a recent six-month period.
Although Cloudflare has publicly identified the protocols most often used for attack
(see Appendix A), attackers constantly look for new protocols that can be used for
reflection.

At the same time, cybercriminals are learning to harness the power of simpler devices
like connected cameras. In September, 2016, Mirai software was used to infect more
than 100,000 devices and unleash one of the largest DDoS attacks up to that time.
Early the following month, Cloudflare identified multiple large attacks coming from
Internet of Things (IoT) devices, like CCTV cameras, and described the attacks as the
new trend. (See Appendix B.) Later the same month, Mirai was used to disable DNS
service provider Dyn, which in turn had worldwide impact and resulted in popular
websites like GitHub, Twitter, Reddit, Netflix, and Airbnb being unavailable for hours.
(See Appendix C.). The attack on Dyn highlighted both the need to protect Internet of
Things (IoT) devices better and the need to defend against traffic coming from infected
loT devices. It also showed how an attack on one part of the Internet infrastructure can
affect dozens of the most popular websites and billions of users.


https://en.wikipedia.org/wiki/Dyn_(company)

Towards A Comprehensive Strategy for Addressing Botnet Attacks

To stop these types of attacks, attackers must be convinced they will be ineffective in
achieving the desired goal of taking down the website. Based on the extensive number
and type of attacks we've observed, Cloudflare suggests a holistic approach to stopping
these attacks, which needs to include four components: (1) Blocking DDoS traffic, (2)
Preventing reflection attacks, (3) Fixing or isolating the number of infected computers
and devices that comprise botnets, and (4) Taking control of the servers used to
command and control botnets.

The first and most immediate priority is to block traffic that is coming from the millions
of PCs, laptops, servers, and other devices that have been infected with malware and
are being used for attacks. The first defenses developed to block traffic from DDoS
attacks were hardware-based. However, over the last five years, cloud-based
techniques for identifying and blocking traffic from botnets have taken over this role
and have proven to be more effective, versatile, and cost-effective. This has been
particularly helpful in less developed countries, where the scarcity of IT skills makes it
hard to defend devices.

Companies like Cloudflare have developed very cost-effective means of using cloud
technology to detect and block malicious traffic during such incidents. Cloudflare’s
security services operate at the edge of the network, allowing us to adapt and mitigate
threats as they are identified and use the capacity of our network of data centers. Our
enterprise-class DDoS protection network, for example, has a capacity of more than 10
terabits per second. Operating at the edge also allows the use of the collective
intelligence of an entire network to identify and block new threats.

But the problem is that too many web site owners remain vulnerable to attack because
they have not taken advantage of any of the available solutions, some of which can be
installed in less than five minutes.

The second component of a strategy to address botnets is to prevent reflection attacks
by limiting the number of servers that are not properly configured. Much of this can be
accomplished by transparency and sharing information about improperly secured
networks. For example, network operators have largely made Smurf attacks -- the
original amplification attacks that date back to the late 1990s -- a thing of the past
simply by reconfiguring their systems in response to the threat. Similarly, in 2014, after
experiencing a large DDoS reflection attack with nearly 400 Gbps of traffic, Cloudflare
published a list of networks originating these attacks. (See Appendix D.) Within less
than two weeks, more than 75 percent of the vulnerable servers that had been
identified were no longer vulnerable. Projects to identify servers vulnerable to
reflection have an important role to play in this space, but the need for education and
efforts to encourage all levels of government and the private sector to take similar
steps remains.



The third component of a strategy addresses the most difficult challenge: How to fix or
isolate the tens of millions of devices that have been infected with malware and turned
into sources of DDoS traffic. Many of these are older devices with outdated or pirated
software, making them easy targets (and hard to fix). Since botnets can be found in
almost every country--on almost every ISP--a broad-based approach is needed. And
still, it is clear that it will not be possible to fix every infected machine. The private
sector can help address this problem by crafting new approaches and technologies,
such as remote remediation, isolation or disabling of devices.

The fourth and final component of a strategy for limiting the damage done by botnets
(and the profits they generate) is to find and shutdown the servers used to control
them and the services used to collect money from extortion schemes. The private
sector plays an important role in helping to identify command and control servers and
prevent their use. Since such command and control servers may be located in several
countries, however, such efforts require extensive international cooperation.

Promising Technologies and Techniques

New technology can help implement all components of this strategy. Companies
continue innovating to develop new ways of addressing the threat.

In order to block DDoS and prevent reflection attacks, for example, network operators
use a number of tools that help monitor networks, detect harmful traffic, and reduce
the effectiveness of attacks. If adopted more widely, these types of tools and
techniques could make the entire infrastructure of the Internet more resistant to DDoS
attacks. Examples include:

1) Tools like NetFlow / IP-FIX, which enable network providers to detect DDoS traffic
and ascertain where it is coming from. At Cloudflare we have had a positive
experience with these technologies, as discussed in the blog post (Appendix E)
by Marek Majkowski. Unfortunately, these technologies are rarely deployed by
the internet providers. This makes it very hard to assess the true source of
reflection attacks.

2) Tools for blocking unusual spikes in traffic. One example is BGP Flowspec, which
is defined in RFC 5575 and provides a versatile, granular options for filtering out
DDoS traffic.

3) Shrinking the packet size of DNSSEC to reduce the effectiveness of DNS
reflection attacks. This technique was described in a blog post (Appendix F) by
Dani Grant published in March 2017.

There are also technological solutions that can help address the growing threat posed
by botnets of IoT devices--and to protect 10T devices from attacks. Cloudflare, for
example, recently announced Orbit, which allows 1oT manufacturers to secure loT



devices. This cloud-based service enables 0T device manufacturers to have a Virtual
Private Network (VPN) for the devices they sell. Rather than relying on the devices
being always secure, the manufacturers can use the cloud as a layer of protection to
deflect exploits against a device that may not have been patched. This helps ensure the
loT devices that cannot or have not been patched are not taken over to launch DDoS
traffic.

These are just some examples of the existing tools and techniques for mitigating DDoS
attacks. Important research is being done in corporations and academia to develop
new techniques using technologies like artificial intelligence and machine learning. One
area of work that is particularly important (but often underappreciated) is efforts to
make anti-DDoS tools easier to deploy and use.

So we have the tools and techniques needed to address DDoS attacks--and more are
being developed. Most experts agree that 80-90% of all cyberattacks could be avoided
if all computer users simply practiced effective cyber hygiene and used easily-available
tools. The case is similar for Distributed Denial of Service attacks and botnets.

The Power of Private Sector Solutions

In many ways, botnets are at a point in their development that is similar to that of
spam fifteen years ago. At that time, the volume of spam was growing at an alarming
rate and defenses against it were still being developed. In response to the growing cost
and annoyance caused by spam, the United States Congress passed the CAN-SPAM Act
that empowered the Federal Trade Commission and law enforcement agencies to
bring charges against spammers. While some spammers were convicted, most spam is
difficult to trace and often comes from outside the United States. Despite the
CAN-SPAM Act, the amount of spam sent continued to grow so that by 2010, 80
percent all email messages (around 200 billion messages a day) were spam.

While legislation was not effective in preventing spam, nowadays a range of tools for
blocking spam prevent the vast majority of spam from reaching their target. ISPs
prevent spammers from sending spam. Corporate networks screen out spam,
particularly messages with malware attached. And email inbox software keeps spam
out of inboxes. Spammers cannot make money if the email messages they send are
never seen or opened. In addition, many organizations have security software to block
employees from clicking on URLs known to be associated with spam scams. And
governments have cracked down on the banks processing payments associated with
the phony products and services spammers are advertising. This kind of multi-pronged
effort has made it much less profitable to send spam than it was ten years ago.

Of course, cybercriminals have moved onto other more lucrative forms of online crime.
The rise of DDoS attacks is due in part to organized crime groups that use botnets to



knock websites offline and then demand extortion money from the website owner.
Ransomware is another new source of income of cybercriminals.

Transparency and Motivation

How can companies be encouraged to do more to ensure they are defended against
botnet attacks (and not inadvertently facilitating them)? One thing is greater
transparency. Data breach notification requirements that ensure companies inform
their customers when their personal data may have been compromised have
motivated companies to use encryption and other means to better protect the data
they collect.

Similarly, better information on which companies have suffered from DDoS attacks
(and why) could be very helpful in protecting best practices. Knowing the damage done
to victims can inspire other companies to install adequate anti-DDoS technologies.

Another place where transparency could motivate best practices is in DNS
amplification attacks. ISPs and companies like Cloudflare have data on which web
servers are not properly configured and are being used for amplify DDoS attacks.
Notifying the owners of these servers (and publicizing those who do not correct the
problem) could highlight the extent of the problem and encourage better cyber
hygiene.

It would also be very useful to compile and publish data and analysis on where DDoS
traffic is coming from, whose IT systems are being used for DNS reflection attacks, and
how many organizations are being adversely affected by DDoS attacks. Clearly, any
effort to collect and analyze such data would need to take into account the privacy of
network users. One of the biggest obstacles to identifying individual systems that are
compromised is that once they are identified and their owners notified, there will need
to be some way to respond to resulting requests for help in fixing vulnerabilities.

Even if network providers and network security companies do not wish to share data
on where specific bots are and which sites they are attacking, by aggregating and
analyzing such data, it would be possible put a spotlight on those countries that have a
particular large percentage of infected computers and poorly-configured servers (and
limited deployment of anti-DDoS services). Such “report cards” could help motivate
both government and private-sector efforts in those countries--and benefit website
owners around the world.

Governance and Stakeholders
For more than thirty years, there has been no global coordinating body guiding the

evolution of the Internet. Indeed, in some cases, different groups compete to develop
and promote different standards or guidelines to address specific challenges and



opportunities. This is a feature, not a bug. The idea that different ideas can “bubble up”
and get tested in the marketplace of ideas is why the Internet and the Web have been
able to evolve so quickly and grow so fast--and meet the varying needs of different
users and communities.

The evolution of the Internet has been guided by decentralized, bottom-up processes.
These include: (1) Standards-setting organizations such as the Internet Engineering
Task Force (IETF) and the World Wide Web Consortium (W3CQ), (2) The Internet
Corporation for Assigned Names and Numbers (ICANN) and the Regional Internet
Registries (RIRs), (3) NANOG and other network operators’ groups, (4) Groups
responsible for the security infrastructure of the Internet (e.g. certificate authorities),
(5) Computer Emergency Readiness Teams (CERTs) that respond to cyberattacks and
other major incidents, analyze threats, and exchange critical cybersecurity information,
and (6) A number of other organizations (e.g. the Internet Society and the Internet
Governance Forum).

The story is no different in the fight against botnets. Companies are competing to
provide new, cheaper, easier-to-use techniques for blocking DDoS traffic and prevent
DDoS attacks in the first place. Various companies and governments are collecting and
analyzing data on where threats and vulnerabilities are and how they are changing.
There is even a healthy competition between intergovernmental bodies trying to track
down users of botnets and help national law enforcement agencies arrest them. In
most technical areas, existing, private-sector-led bodies are doing a good job of
fostering new, innovative ways to make the Internet more secure, more robust and
more resilient, and more efficient. However, as mentioned above, there are many
areas where more work is needed to encourage owners and users of IT systems to use
available tools and techniques to make their systems--and the Internet--more secure.
Governments have a particularly important role to play in ensuring that their own
systems and services are resistant to DDoS attacks.

The Role of Government

Securing Government Systems
With relatively little effort and expense, Federal agencies could be excellent role
models in adopting best practices to protect their IT systems from attack.

In addition to mandating a process to promote action against botnet attacks, Executive
Order 13800 requires agency heads to report on--and be held accountable
for--managing the cybersecurity risk to their networks. DDoS attacks must be
considered part of that risk. Given the availability of effective tools against DDoS
attacks, every agency head should have a strategy to mitigate the risks of an attack and
should be held accountable for any failure to protect against them.



The government must also ensure that its systems are not contributing to the problem.
As mentioned above, Cloudflare monitors cyberattacks and often detects DNS
reflection attacks, which use IP spoofing. One of the most egregious example of this
was the web site run by the Consumer Product Safety Commission (CPSC). As
explained in a Cloudflare blog last year (Appendix G), at one point, almost every major
DDoS attack using DNS amplification that Cloudflare detected was taking advantage of
the CPSC server. Clearly, the CPSC is just one agency; every agency needs to take steps
to ensure that they are not inadvertently “aiding and abetting” botnet users. Federal
agencies could work with the companies that have the data needed to detect and fix
servers that are improperly configured.

Promoting Transparency

One of the most important and most effective measures for motivating businesses and
other organizations to invest more effort and money in securing their digital assets has
been requirements that companies affected by data breaches report them. Similarly,
Securities and Exchange Commission regulations that require public companies to
report large cyberattacks, have highlighted the growth of such incidents and exposed
companies that had not devoted enough attention to cyber threats.

Currently, companies are not required to report large botnet attacks and the damage
they can cause. Public disclosure of such attacks would do a great deal to demonstrate
the growing threat they pose, the types of attacks, and how they are changing.

Educating Users

The fact that many organizations are not using the many tools that are already
available to prevent malware from infecting their machines or to block DDoS traffic
from reaching them means that there is a clear need to do more to make computer
users and website owners aware of how they can protect themselves. Thus,
recently-introduced legislation or other mechanisms to help small business cope with
cybersecurity challenges could be helpful. In addition, new efforts by cybersecurity
trade associations and other business groups are helping highlight the threat posed by
botnets, particularly since last year's Mirai 0T botnet attacks. In addition, it would be
helpful if Internet Services Providers redoubled their efforts to inform their customers
on what they can do to prevent or mitigate DDoS attacks.

Law enforcement

As mentioned above, shutting down the command and control servers that manage
botnets needs to be part of any strategy to reduce the threat of DDoS attacks. This is
where law enforcement--coordinating with industry initiatives like Microsoft's Digital
Crimes Unit-- has a clear role.

Advising policy makers
The Department of State, the Department of Commerce, the Department of Homeland
Security, and other agencies could help foreign governments raise awareness about



DDoS attacks and best practices for mitigating them. Similar efforts at the state and
local level could would also be useful.

Conclusion

Cloudflare commends the NTIA (and NIST) for engaging the full range of stakeholders
in their efforts to address the threat posed by botnets. We hope that the recent
executive order on cybersecurity will build even more momentum behind efforts to
convince cybercriminals that “DDoS doesn’t pay,” and look forward to contributing to
future workshops and discussions on this and related topics.
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APPENDIX A

Reflections on reflection (attacks)

24 May 2017 by Marek Majkowski.

Recently Akamai published an article about CLDAP reflection attacks. This got us thinking.
We saw attacks from Connectionless LDAP servers back in November 2016 but totally
ignored them because our systems were automatically dropping the attack traffic without
any impact.

BY 2.0 image by RageZ

We decided to take a second look through our logs and share some statistics about
reflection attacks we see regularly. In this blog post, I'll describe popular reflection attacks,
explain how to defend against them and why Cloudflare and our customers are immune to
most of them.

1
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A recipe for reflection
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Let's start with a brief reminder on how reflection attacks (often called "amplification

attacks") work.
To bake a reflection attack, the villain needs four ingredients:
e Aserver capable of performing IP address spoofing.
e A protocol vulnerable to reflection/amplification. Any badly designed
UDP-based request-response protocol will do.
o Alist of "reflectors": servers that support the vulnerable protocol.
e Avictim IP address.

The general idea:

e The villain sends fake UDP requests.

e The source IP address in these packets is spoofed: the attacker sticks the
victim's IP address in the source IP address field, not their own IP address as

they normally would.
Each packet is destined to a random reflector server.

The spoofed packets traverse the Internet and eventually are delivered to the

reflector server.

e The reflector server receives the fake packet. It looks at it carefully and thinks:
"Oh, what a nice request from the victim! | must be polite and respond!". It

sends the response in good faith.
e Theresponse, though, is directed to the victim.


https://en.wikipedia.org/wiki/IP_address_spoofing

The victim will end up receiving a large volume of response packets it never had requested.

With a large enough attack the victim may end up with congested network and an interrupt
storm.

The responses delivered to victim might be larger than the spoofed requests (hence
amplification). A carefully mounted attack may amplify the villain's traffic. In the past we've
documented a 300Gbps attack generated with an estimated 27Gbps of spoofing capacity.

Popular reflections

During the last six months our DDoS mitigation system "Gatebot" detected 6,329 simple
reflection attacks (that's one every 40 minutes). Here is the list by popularity of different
attack vectors. An attack is defined as a large flood of packets identified by a tuple:
(Protocol, Source Port, Target IP). Basically - a flood of packets with the same source port to
a single target. This notation is pretty accurate - during normal Cloudflare operation,
incoming packets rarely share a source port number!

Count Proto Src port

3774 udp 123 NTP
1692 udp 1900 SSDP

438 udp O IP fragmentation
253 udp 53 DNS

42 udp 27015 SRCDS

20 udp 19 Chargen

19 udp 20800 Call Of Duty
16 udp 161 SNMP

12 udp 389 CLDAP

11 udp 111 Sunrpc

10 udp 137 Netbios

6 tcp 80 HTTP

5 udp 27005 SRCDS

2 udp 520 RIP
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Source port 123/udp NTP

By far the most popular reflection attack vector remains NTP. We have blogged about NTP
in the past:

e Understanding and mitigating NTP-based DDoS attacks
e Technical Details Behind a 400Gbps NTP Amplification DDoS Attack
e Good News: Vulnerable NTP Servers Closing Down

Over the last six months we've seen 3,374 unique NTP amplification attacks. Most of them
were short. The average attack duration was 11 minutes, with the longest lasting 22 hours

(1,300 minutes). Here's a histogram showing the distribution of NTP attack duration:
Minutes min:1.00 avg:10.51 max:1297.00 dev:35.02 count:3774

Minutes:
value [-----===-=====mmmmmmm oo count
0| 2
1] * 53
16 | *xkk*k 2719
32 | * 72
64 | 35
128 | 11
256 | 7
512 | 2
1024 | 1

Most of the attacks used a small number of reflectors - we've recorded an average of 1.5k

unique IPs per attack. The largest attack used an estimated 12.3k reflector servers.
Unique IPs min:5.00 avg:1552.84 max:12338.00 dev:1416.03 count:3774

Unique IPs:
value |-------==--=-- - count
16 | 0
32 | 1
64 | 8
128 | *EEAE 117

8192 | 13

The peak attack bandwidth was on average 5.76Gbps and max of 64Gbps:
Peak bandwidth in Gbps min:0.06 avg:5.76 max:64.41 dev:6.39 count:3774
Peak bandwidth in Gbps:
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32 | * 39
64 | 1

This stacked chart shows the geographical distribution of the largest NTP attack we've seen
in the last six months. You can see the packets per second number directed to each
datacenter. One our datacenters (San Jose to be precise) received about a third of the total
attack volume, while the remaining packets were distributed roughly evenly across other
datacenters.

25 Mpps

20 Mpps

15 Mpps

10:12 10:14 10:16 10:18 10:20 2 10:28 10:30

The attack lasted 20 minutes, used 527 reflector NTP servers and generated about 20Mpps
/ 64Gbps at peak.

Dividing these numbers we can estimate that a single packet in that attack had on average
size of 400 bytes. In fact, in NTP attacks the great majority of packets have a length of

precisely 468 bytes (less often 516). Here's a snippet from tcpdump:

$ tcpdump -n -r 3164b6fac836774c.pcap -v -c 5 -K

11:38:06.075262 IP -(tos 0x20, ttl 60, id 0, offset 0, proto UDP (17), length 468)
216.152.174.70.123 > x.x.X.x.47787: [|ntp]

11:38:06.077141 IP -(tos 0xO0, ttl 56, id 0, offset O, proto UDP (17), length 468)
190.151.163.1.123 > x.X.X.X.44540: [|ntp]

11:38:06.082631 IP -(tos 0xcO, ttl 60, id 0, offset 0, proto UDP (17), length 468)
69.57.241.60.123 > x.x.x.X.47787: [|ntp]

11:38:06.095971 IP -(tos 0x0, ttl 60, id 0, offset 0, proto UDP (17), length 468)
126.219.94.77.123 > x.X.X.X.21784: [|ntp]

11:38:06.113935 IP -(tos 0x0, ttl 59, id 0, offset 0, proto UDP (17), length 516)
69.57.241.60.123 > x.x.X.x.9285: [|ntp]

Source port 1900/udp SSDP

The second most popular reflection attack was SSDP, with a count of 1,692 unique events.
These attacks were using much larger fleets of reflector servers. On average we've seen
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around 100k reflectors used in each attack, with the largest attack using 1.23M reflector

IPs. Here's the histogram of number of unique IPs used in SSDP attacks:
Unique IPs min:15.00 avg:98272.02 max:1234617.00 dev:162699.90 count:1691

Unique IPs:
value |------mmmmmmmmmmmm oo count
256 | 0
512 | 4
1024 | Kok kkok KoKk Kok kKR kK Q8
2048 | KoK KKK KKK KK KK KK KK KK KKKk kK 5D
4096 | KoK ok oK oK K oK OK oK K K KKK KKK KKK Kok kKoK kK {78
8192 | Kok oKk K KKK KKK oK K KOk KRk Kok k{58
16384 | KKK KKK KKK KKK KK KK KK KK KK KKK KKK 76
32768 | ook Kok Kok ok ok ok Ok Ok ok Kok Kok Kok Kok Kok Kok KRk kR Rk Rk D43
D R e
131072 | KooKk K ok ok KK KoKk K K K KKK K K OKR KKKk Kok Rk ok k DD
262144 | $okokokkok ok kR xRk kk Q5
524288 | )kkkkkk 47
1048576 | * 7

The attacks were also longer, with 24 minutes average duration:
$ cat 1900-minutes| ~/bin/mmhistogram -t "Minutes"
Minutes min:2.00 avg:23.69 max:1139.00 dev:57.65 count:1692

Minutes:
e e e count
0| 0
1] 10
64 | *kxk 48
128 | * 19
256 | * 16
512 | 1
1024 | 2

Interestingly the bandwidth doesn't follow a normal distribution. The average SSDP attack

was 12Gbps and the largest just shy of 80Gbps:

$ cat 1900-Gbps| ~/bin/mmhistogram -t "Bandwidth in Gbps"

Bandwidth in Gbps min:0.41 avg:11.95 max:78.03 dev:13.32 count:1692
Bandwidth in Gbps:

value |-========mm=mmmmm oo count

64 | * 13


https://en.wikipedia.org/wiki/Normal_distribution
https://www.us-cert.gov/ncas/alerts/TA14-017A

Let's take a closer look at the largest (80Gbps) attack we've recorded. Here's a stacked
chart showing packets per second going to each datacenter. This attack was using 940k
reflector IPs, generated 30Mpps. The datacenters receiving the largest proportion of the
traffic were San Jose, Los Angeles and Moscow.

35 Mpps
30 Mpps
25 Mpps
20 Mpps

15 Mpps

10 Mpps

5 Mpps

Opps
16:05 1610

The average packet size was 300 bytes. Here's how the attack looked on the wire:
$ tcpdump -n -r 4ca985a2211f8c88.pcap -K -c 7

10:24:34.030339 IP - 219.121.108.27.1900 > x.x.x.x.25255: UDP, length 301
10:24:34.406943 IP - 208.102.119.37.1900 > x.x.x.x.37081: UDP, length 331
10:24:34.454707 IP - 82.190.96.126.1900 > x.x.x.x.25255: UDP, length 299
10:24:34.460455 IP - 77.49.122.27.1900 > x.x.x.x.25255: UDP, length 289
10:24:34.491559 IP - 212.171.247.139.1900 > x.X.x.X.25255: UDP, length 323
10:24:34.494385 IP - 111.1.86.109.1900 > x.x.x.x.37081: UDP, length 320
10:24:34.495474 1P - 112.2.47.110.1900 > x.x.x.x.37081: UDP, length 288

Source port 0/udp IP fragmentation

Sometimes we see reflection attacks showing UDP source and destination port numbers
set to zero. This is usually a side effect of attacks where the reflecting servers responded
with large fragmented packets. Only the first IP fragment contains a UDP header,
preventing subsequent fragments from being reported properly. From a router point of
view this looks like a UDP packet without UDP header. A confused router reports a packet
from source port 0, going to port 0!

This is a tcpdump-like view:

$ tcpdump -n -r 4651d0ec9e6fdc8e.pcap -c 8

02:05:03.408800 IP - 190.88.35.82.0 > x.x.x.x.0: UDP, length 1167
02:05:03.522186 IP - 95.111.126.202.0 > x.x.x.x.0: UDP, length 1448
02:05:03.525476 IP - 78.90.250.3.0 > x.x.x.x.0: UDP, length 839
02:05:03.550516 IP - 203.247.133.133.0 > x.x.x.x.0: UDP, length 1472
02:05:03.571970 IP - 54.158.14.127.0 > x.x.x.x.0: UDP, length 1328
02:05:03.734834 IP - 1.21.56.71.0 > x.x.x.x.0: UDP, length 1250
02:05:03.745220 IP - 195.4.131.174.0 > x.x.x.x.0: UDP, length 1472
02:05:03.766862 IP - 157.7.137.101.0 > x.x.x.x.0: UDP, length 1122



An avid reader will notice - the source IPs above are open DNS resolvers! Indeed, from our
experience most of the attacks categorized as fragmentation are actually a side effect of
DNS amplifications.

Source port 53/udp DNS

Over the last six months we've seen 253 DNS amplifications. On average an attack used
7100 DNS reflector servers and lasted 24 minutes. Average bandwidth was around
3.4Gbps with largest attack using 12Gbps.

This is a simplification though. As mentioned above multiple DNS attacks were registered
by our systems as two distinct vectors. One was categorized as source port 53, and
another as source port 0. This happened when the DNS server flooded us with DNS
responses larger than max packet size, usually about 1,460 bytes. It's easy to see if that

was the case by inspecting the DNS attack packet lengths. Here's an example:

DNS attack packet lengths min:44.00 avg:1458.94 max:1500.00 dev:208.14 count:40000
DNS attack packet lengths:

value |=========-==c-mommmmmoo oo count

8 | 0

16 | 0

32 | 129

64 | 479

128 | 84

256 | 164

512 | 268

The great majority of the received DNS packets were indeed close to the max packet size.
This suggests the DNS responses were large and were split into multiple fragmented

packets. Let's see the packet size distribution for accompanying source port 0 attack:
$ tcpdump -n -r 4651d0ec9e6fdc8e.pcap \

| grep length \

| sed -s 's#.*length \([0-9]\+\).*#\1#g" \

| ~/bin/mmbhistogram -t "Port 0 packet length" -l -b 100
Port O packet length min:0.00 avg:1264.81 max:1472.00 dev:228.08 count:40000
Port O packet length:

Valuelllsss=sss755s75ssss=c-smss-mssrs s count
0| 348
100 | 7
200 | 17
300 | 11
400 | 17
500 | 56
600 | 3
700 | ** 919
800 | * 520
900 | * 400

1200 | Fkxkk 1791



1300 | HHHRAK 2057

About half of the fragments were large, close to the max packet length in size, and rest
were just shy of 1,200 bytes. This makes sense: a typical max DNS response is capped at
4,096 bytes. 4,096 bytes would be seen on the wire as one DNS packet fragment with an IP

header, one max length packet fragment and one fragment of around 1,100 bytes:
4,096 = 1,460+1,460+1,060

For the record, the particular attack illustrated here used about 17k reflector server IPs,
lasted 64 minutes, generated about 6Gbps on the source port 53 strand and 11Gbps of
source port 0 fragments.

We have blogged about DNS reflection attacks in the past:

e How to Launch a 65Gbps DDoS, and How to Stop One
Deep Inside a DNS Amplification DDoS Attack
How the Consumer Product Safety Commission is (Inadvertently) Behind the
Internet’s Largest DDoS Attacks

Other protocols

We've seen amplification using other protocols such as:

e port 19 - Chargen
e port27015-SRCDS
e port 20800 - Call Of Duty

...and many other obscure protocols. These attacks were usually small and not notable. We
didn't see enough of then to provide meaningful statistics but the attacks were
automatically mitigated.

Poor observability

Unfortunately we're not able to report on the contents of the attack traffic. This is notable
for the NTP and DNS amplifications - without case by case investigations we can't report
what responses were actually being delivered to us.

This is because all these attacks stopped at the network layer. Routers are heavily
optimized to perform packet forwarding and have a limited capacity of extracting raw
packets. Basically there is no "tcpdump" there.


https://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack/
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We track these attacks with netflow, and we observe them hit our routers firewall. The
tcpdump snippets shown above were actually fake, reconstructed artificially from netflow
data.

Trivial to mitigate

With properly configured firewall and sufficient network capacity (which isn't always easy
to come by unless you are the size of Cloudflare) it's trivial to block the reflection attacks.
But note that we've seen reflection attacks up to 80Gbps so you do need sufficient
capacity.

Properly configuring a firewall is not rocket science: default DROP can get you quite far. In
other cases you might want to configure rate limiting rules. This is a snippet from our
JunQOS config:
term RATELIMIT-SSDP-UPNP {
from {
destination-prefix-list {
ANYCAST;
b
next-header udp;
source-port 1900;
)
then {
policer SA-POLICER;
count ACCEPT-SSDP-UPNP;
next term;
)
J;

But properly configuring firewall requires some Internet hygiene. You should avoid using
the same IP for inbound and outbound traffic. For example, filtering a potential NTP DDoS



will be harder if you can't just block inbound port 123 indiscriminately. If your server
requires NTP, make sure it exits to the Internet over non-server IP address!

Capacity game

While having sufficient network capacity is necessary, you don't need to be a Tier 1 to
survive amplification DDoS. The median attack size we've received was just 3.35Gbps,
average 7Gbps, Only 195 attacks out of 6,353 attacks recorded - 3% - were larger than

30Gbps.
All attacks in Gbps: min:0.04 avg:7.07 med:3.35 max:78.03 dev:9.06 count:6329
All attacks in Gbps:

value |--==========mmmmm oo count
32 | KKk 157
64 | 14

But not all Cloudflare datacenters have equal sized network connections to the Internet. So
how can we manage?

Amsterdam San Jose
1.2.3.0/24 1.2.3.0/24
London Los Angeles
5 e Internet R S 5
1.2.3.0/24 1.2.3.0/24
Moscow \ New York

8 a8

1.2.3.0/24 1.2.3.0/24

Cloudflare was architected to withstand large attacks. We are able to spread the traffic on
two layers:


https://blog.cloudflare.com/how-cloudflares-architecture-allows-us-to-scale-to-stop-the-largest-attacks/

e Our public network uses Anycast. For certain attack types - like amplification -
this allows us to split the attack across multiple datacenters avoiding a single
choke point.

e Additionally we use ECMP internally to spread a traffic destined to single IP
address across multiple physical servers.

In the examples above, | showed a couple of amplification attacks getting nicely distributed
across dozens of datacenters across the globe. In the shown attacks, if our router firewall
failed, our physical servers wouldn't receive more than 500kpps of attack data. A well
tuned iptables firewall should be able to cope with such a volume without a special kernel
offload help.

Inter-AS Flowspec for the rest

Withstanding reflection attacks requires sufficient network capacity. Internet citizens not
having fat network cables should use a good Internet Service Provider supporting
flowspec.

Flowspec can be thought of as a protocol enabling firewall rules to be transmitted over a
BGP session. In theory flowspec allows BGP routers on different Autonomous Systems to
share firewall rules. The rule can be set up on the attacked router and distributed to the
ISP network with the BGP magic. This will stop the packets closer to the source and
effectively relieve network congestion.

Unfortunately, due to performance and security concerns only a handful of large ISP's
allow inter-AS flowspec rules. Still - it's worth a try. Check if your ISP is willing to accept
flowspec from your BGP router!

At Cloudflare we maintain an intra-AS flowspec infrastructure, and we have plenty of war
stories about it.

Summary

In this blog post we've given details of three popular reflection attack vectors: NTP, SSDP
and DNS. We discussed how the Cloudflare Anycast network helps us avoid a single choke
point. In most cases dealing with reflection attacks is not rocket science though sufficient
network capacity is needed and simple firewall rules are usually enough to cope.

The types of DDoS attacks we see from other vectors (such as IoT botnets) are another
matter. They tend to be much larger and require specialized, automatic DDoS mitigation.
And, of course, there are many DDoS attacks that occur using techniques other than
reflection and not just using UDP.
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APPENDIX B

Say Cheese: a snapshot of the massive
DDoS attacks coming from loT cameras

11 Oct 2016 by Marek Majkowski.

Over the last few weeks we've seen DDoS attacks hitting our systems that show that
attackers have switched to new, large methods of bringing down web applications. They
appear to come from an loT botnet (like Mirai and relations) which were responsible for
the large attacks against Brian Krebs.

Our automatic DDoS mitigation systems have been handling these attacks, but we thought
it would be interesting to publish some of the details of what we are seeing. In this article
we'll share data on two attacks, which are perfect examples of the new trends in DDoS.

BY 2.0 image by E Magnuson

In the past we've written extensively about volumetric DDoS attacks and how to mitigate
them. The attacks are distinguished by their heavy use of L7 (i.e. HTTP) attacks as opposed
to the more familiar SYN floods, ACK floods, and NTP and DNS reflection attacks.
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Many DDoS mitigation systems are tuned to handle volumetric L3/4 attacks; in this
instance attackers have switched to L7 attacks in an attempt to knock web applications
offline.

Seeing the move towards L7 DDoS attacks we put in place a new system that recognizes
and blocks these attacks as they happen. The L7 mitigator recognizes attacks against a

single host and distributes a fingerprint that protects all 4 million Cloudflare customers.
We'll write more about it in the future.

HTTP Requests per second

Often when DDoS attacks are reported the size of the attack is reported in Gbps (or even
Tbps), but there are many ways to measure the size of an attack.

For L7 HTTP-based attacks it also makes sense to measure requests per second. That's
because, unlike volumetric L3/4 attacks, HTTP-based attacks eat up resources by making
actual HTTP requests to the attacked server.

Recently we were hit by a couple of unusually large L7 attacks, crossing 1 million HTTP
requests per second (1 Mrps). Here is one of them:

HTTP attacks

1.5 Mrps

1.0 Mrps

0 Mrps

01:30 01:40 01:50 02:00 02:10 02:20 02:30 02:40 02:50

This attack continued for 15 minutes. Multiple recent attacks had >1 Mrps and lasted for
minutes.

This particular attack peaked at 1.75 Mrps. It was composed of short HTTP requests
(around 121 bytes per request), without anything unusual in the HTTP headers. The
requests had a fixed Cookie header. We counted 52,467 unique IP addresses taking part in
this attack.



Due to the Anycast nature of the Cloudflare network, the malicious traffic was spread
across multiple Cloudflare cities and with 100 cities we are able to get a good picture of
where the bots are located.

Here are the top affected datacenters:
HTTP attacks (by datacenter)
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This attack went largely to our Hong Kong and Prague datacenters. This is another
common characteristic; most of the recent attacks looked similar.

Since the attack looks concentrated, we wondered if only a small number of AS numbers
(networks) were the source of the attack. Unfortunately no, the IP addresses participating
in the flood are evenly distributed. Out of 10,000 random requests we analyzed, we saw

source IP addresses from over 300 AS numbers. These are the biggest sources:
48 AS24086 ; Vietnam
101 AS4134 ; China
128 AS7552 ; Vietnam
329 AS45899 ; Vietnam
2366 AS15895 ; Ukraine

These attacks are a new trend, so it's not fair to blame the AS operators for not cleaning up
devices participating in them. Having said that, the Ukrainian ISP and Vietnamese AS45899
seem to stand out. We'll get back to those in a moment.

Bandwidth

Although requests per second is a common metric for measuring these attacks, it's not the
only one. We can also measure the bandwidth used in the attack.


https://www.cloudflare.com/network/
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)

By this count the attack mentioned above was pretty small (since we've got used to DDoS
attacks being reported in 100s of Gbps). It peaked at roughly 2Gbps. But recall that these
L7 attacks end up hitting a web server and are not simply volumetric: they use server
resources.

However, we saw another attack that was unusual in that it was an L7 with similar
bandwidth consumption to traditional L3/4 volumetric attacks. First, here's the requests
per second graph:

HTTP attacks
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This attack generated "only" 220k requests per second at peak. However, it generated
significant inbound bandwidth:

HTTP attacks
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This attack topped out at 360Gbps per second of inbound HTTP traffic. It's pretty unusual
for an HTTP attack to generate a substantial amount of network traffic. This attack was
special, and was composed of HTTP requests like this:



GET /en HTTP/1.1
User-Agent: <some string>
Cookie: <some cookie>
Host: example.com
Connection: close
Content-Length: 800000

a[]=&b[]=&a[]=8&b[]=&a[]=&b[]=&a[]=&b[]=&a[]=&b[]=&a[]=&b[]=...

It's the long payload sent after the request headers that allowed the attackers to generate
substantial traffic. Since this attack we've seen similar events with varying parameters in
the request body. Sometimes these attacks came as GET requests, sometimes as POST.

Additionally, this particular attack lasted roughly one hour, with 128,833 unique IP
addresses. The datacenter distribution was different, with most of the attack concentrated
on Frankfurt:
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As the attack was composed of a very large number of bots, we expected the AS
distribution to be fairly even. Indeed, in the 10,000 request sample we recorded a
whopping 737 unique AS numbers. Here are the top sources:

286 AS45899 ; Vietnam

314 AS7552 ; Vietnam

316 AS3462 ; Taiwan

323 AS18403 ; Vietnam

1510 AS15895 ; Ukraine

Once again, the Ukrainian ISP and couple of Viethamese networks are the top hitters.

More on the sources

We wondered why AS15895 was so special. First, we investigated our traffic charts. Here is
the inbound traffic we received from them over last 30 days:



AS15895/Kyivstar PJSC (located in Ukraine) Inbound bandwidth per CloudFlare POP
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The first significant attack was clearly seen as a spike on September 29 and reached
30Gbps. A very similar chart is visible for AS45899:

AS45899/VNPT Corp (located in Viet Nam) Inbound bandwidth per CloudFlare POP
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We can see some smaller attacks attempted around September 26. A couple of days later

the attackers turned the throttle up hitting 7.5Gbps non-stop from this ASN. Other AS
numbers we investigated reveal a similar story.

Devices

While it's not possible for us to investigate all the attacking devices, it is fair to say that
these attacks came from Internet-of-Things (loT) category of devices.

There are multiple hints confirming this theory.

First, all of the attacking devices have port 23 (telnet) open (closing connection

immediately) or closed. Never filtered. This is a strong hint that the malware disabled the
telnet port just after it installed itself.

Most of the hosts from the Viethamese networks look like connected CCTV cameras.
Multiple have open port 80 with presenting "NETSurveillance WEB" page.
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The Ukrainian devices are a bit different though. Most have port 80 closed, making it
harder to identify.

We had noticed one device with port 443 open serving a valid TLS cert issued by Western

Digital, handling domain device-xxxx.wd2go.com suggesting it was a hard drive (Network
Attached Storage to be precise).

k&3: the future of DDoS

We plan to continue our investigation and collaborate with external researchers to find a
permanent solution to this rising threat.

Although the most recent attacks have mostly involved Internet-connected cameras,
there's no reason to think that they are likely the only source of future DDoS attacks. As
more and more devices (fridges, fitness trackers, sleep monitors, ...) are added to the
Internet they'll likely be unwilling participants in future attacks.


https://en.wikipedia.org/wiki/Network-attached_storage
https://en.wikipedia.org/wiki/Network-attached_storage
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Update:

Originally this article attributed the Mirai botnet for the shown attacks. We now believe
that, for technical reasons, the large-bandwidth attack might not have come from a botnet
running the leaked Mirai code.
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How the Dyn outage affected Cloudflare

27 Oct 2016 by John Graham-Cumming.

Last Friday the popular DNS service Dyn suffered three waves of DDoS attacks that
affected users first on the East Coast of the US, and later users worldwide. Popular
websites, some of which are also Cloudflare customers, were inaccessible. Although
Cloudflare was not attacked, joint Dyn/Cloudflare customers were affected.

Almost as soon as Dyn came under attack we noticed a sudden jump in DNS errors on our
edge machines and alerted our SRE and support teams that Dyn was in trouble. Support
was ready to help joint customers and we began looking in detail at the effect the Dyn
outage was having on our systems.

An immediate concern internally was that since our DNS servers were unable to reach Dyn
they would be consuming resources waiting on timeouts and retrying. The first question |
asked the DNS team was: “Are we seeing increased DNS response latency?” rapidly followed
by “If this gets worse are we likely to?". Happily, the response to both those questions (after
the team analyzed the situation) was no.

However, that didn't mean we had nothing to do. Operating a large scale system like
Cloudflare that deals with the continuously changing nature of the Internet means that
there’s always something to learn.

Back in July 2015 Dyn had an outage that also affected some of our customers and we
changed our handling of so-called infrastructure DNS records in response to prevent a
similar problem, from any provider, affecting Cloudflare.

Based on what we learned last Friday we are making some changes to our internal DNS
infrastructure so that it performs better when a major provider is having problems or an
outage (whether caused by DDoS or not). To understand those changes it's helpful to take
a look at the role of DNS and what we saw on Friday.

A little bit about DNS

The Domain Name System (DNS) provides an address book service for the Internet. It is
responsible for converting the friendly, human-readable domain names we type into our
web browsers to IP addresses for websites. Let's walk through the life of an example web
request to see where DNS plays a role.

We can start by entering a web address into our browser, https://www.cloudflare.com/.
The browser translates this name into an IP address so it can contact the server that's


https://www.cloudflare.com/
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hosting the page, it will do this using DNS. We can make these DNS queries ourselves using

the dig command line tool to see what values are returned.
$ dig www.cloudflare.com A

;7 QUESTION SECTION:
;www.cloudflare.com. IN A

;5 ANSWER SECTION:
www.cloudflare.com. 10 IN A 198.41.215.162
www.cloudflare.com. 10 IN A 198.41.214.162

The DNS data model is split into two core concepts, names and records. The name here is
www.cloudflare.com and the record type we have queried is A, which is used to store IPv4
addresses. There are other types of records for storing other types of data, e.g AAAA
records for IPv6 addresses. We can see from the answer above that there are two IPv4
addresses for www.cloudflare.com; the browser picks one of these to use.

Records in the DNS also have an associated TTL which defines how long the data should be
cached for, these records have a TTL of 10 seconds. This means the browser can store this
information and skip making further DNS queries for the domain for the next 10 seconds.

For Cloudflare customers, the answer will contain our Anycast IPs instead of the origin
ones (the IP addresses of the web hosting provider). The browser will then send requests
to us, and we will serve content from our cache or proxy the request to the origin web
server.

There are two common ways of configuring origins on Cloudflare. The first is to specify A
and AAAA records, which explicitly provides us with the IP addresses of the origin. In this
situation, our network knows ahead of time where it can contact the origin, so no further
DNS resolution is required. For example, if www.example.com uses Cloudflare and has
specified 2001:db8:5ca1:ab1e as the IP address of the origin server in the Cloudflare
control panel, we can connect directly to the origin server to retrieve resources.

The other is to use a CNAME, which is a pointer to another DNS name.



Origin configured with A/AAAA records

Origin configured with a CNAME

1o

Cloudflare o >
CDN

Cloudflare o >
CDN

External

DNS Provider

When our servers receive a request with the origin configured using a CNAME, we have to
perform an external DNS lookup to resolve the target of the CNAME to IP addresses. This
information is cached, based on the TTL defined on the CNAME record. In this case, our

ability to serve content (that is not in the cache) entirely depends on an external DNS
lookup to resolve the CNAME to IPs.

For example, suppose www.example.com had set up a CNAME in the Cloudflare control
panel pointing to server11.myhostingprovider.biz it would be necessary to look up the IP
address of server11.myhostingprovider.biz before contacting the origin server.
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In many cases the target of a CNAME is handled by a third party DNS provider. If the third
party provider is unable to answer our query, we are unable to resolve the domain to an
origin IP and cannot serve the request.

What Friday’'s Dyn outage looked like

As Dyn says in their discussion of the DDoS attack there were three distinct waves. For
Cloudflare that manifested itself in two periods during which our internal DNS query error
rate spiked.

The first attack started at 1110 UTC and mostly affected DNS resolution on the US East
Coast. This world map from our monitoring systems shows the Cloudflare data centers
where the DNS error rate was spiking because of the Dyn outage.

The green dots on the map are Cloudflare data centers that were unaffected by the Dyn
DDoS. The largest effect was on the US East Coast, although the attack had a knock-on
effect in Singapore and some parts of Europe. This is most likely because the architecture
of the Internet does not directly line up with geography. Locations that are physically
disparate can sometimes appear ‘close’ on the Internet because of undersea cables or
decisions on how to route traffic.


https://www.dynstatus.com/incidents/5r9mppc1kb77
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Errors per second

The chart shows the DNS error rate in each Cloudflare data center affected by the outage.
It's possible to see the attack ramp up rapidly and then remained sustained until Dyn was
able to tackle it.

Later in the day the attackers returned with greater force and had a worldwide impact.
This map shows the Cloudflare data centers seeing errors because Dyn was inaccessible.
As you can see almost the entire planet was affected (with the exception of our China
locations; we'll return to why below).
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Once again it's possible to see the attack ramping up at 1550 UTC and continuing for some
time. Dyn reports that the attack was fully mitigated at 1700 UTC.

Media and Dyn reported a third wave of attacks later on Friday, but Dyn mitigated that
wave immediately and so fast that it did not have any affect on Cloudflare protected
websites and applications and did not show up in our systems.

Why China was unaffected

During the most intense period of attack on Dyn our locations in China were almost
completely unaffected. That's because we handle DNS a little differently inside China.

To cope with sometimes fluctuating network conditions inside China our data centers are
configured to keep DNS records for origin servers cached in our servers for longer than the
rest of the world. This caching meant that even though Dyn was down and couldn’t be
reached from anywhere (including China) we still had cached DNS records for sites that
used Dyn on our China servers. Thus we were able to reach origin servers and continue
serving content. That shows up as green dots on the map above.



Unfortunately, there's a downside to hanging on to DNS records for a long time: if one of
our customers changes their origin’s DNS records we'll keep using the old DNS records and
IP addresses. That could lead to downtime, or poor service.

The ideal system would recheck DNS records frequently so that changes are reflected
quickly but in the event that the upstream DNS provider was unavailable (because of an
attack or other outage) it would be able to use the DNS records it has cached.

Doing so is known as ‘serve stale while revalidating’. Our upstream DNS resolvers will
cache records checking frequently for changes. If the upstream DNS is unavailable we'll
continue to serve from cache until it's possible to refresh the DNS records.

We are testing and rolling out that change now and expect this to greatly diminish the
impact of events similar to the Dyn DDoS for all of our customers who use CNAME'd DNS
records that rely on a third-party DNS provider.

Conclusion

The Internet is a shared space. Because companies, people, and institutions work together
we have a global, connected network that allows us to work and play from almost
anywhere. Cooperation means that we work together on standards and interoperability to
keep the network running and evolving.

But the Internet is very complex and, as with many things, the devil is in the details and
operating Internet infrastructure is a process of constant improvement. Although the Dyn
DDoS felt scary to many people unfamiliar with how the Internet operates, such attacks
result in a stronger network. Just as Cloudflare is making changes to its software and
configuration, so are others across the net.



APPENDIX D

Technical Details Behind a 400Gbps NTP
Amplification DDoS Attack

13 Feb 2014 by Matthew Prince.

On Monday we mitigated a large DDoS that targeted one of our customers. The attack
peaked just shy of 400Gbps. We've seen a handful of other attacks at this scale, but this is
the largest attack we've seen that uses NTP amplification. This style of attacks has grown
dramatically over the last six months and poses a significant new threat to the web.
Monday's attack serves as a good case study to examine how these attacks work.

NTP Amplification 101

Before diving into the particular details of this attack, it's important to understand the
basic mechanics of how NTP amplification attacks work. This is a quick overview of how
these attacks occur. John Graham-Cumming on our team previously wrote a detailed
primer on NTP amplification attacks if you're interested in further technical details. If
you're interested in amplification attacks, you may also find interesting our posts about
DNS Amplification attacks. These attacks use a similar method but target open DNS
resolvers rather than NTP servers.

An NTP amplification attack begins with a server controlled by an attacker on a network
that allows source IP address spoofing (e.g., it does not follow BCP38). The attacker
generates a large number of UDP packets spoofing the source IP address to make it


http://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks
https://blog.cloudflare.com/author/matthew-prince/
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http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack
http://tools.ietf.org/html/bcp38
http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack

appear the packets are coming from the intended target. These UDP packets are sent to
Network Time Protocol servers (port 123) that support the MONLIST command.

I'd personally be curious to talk with whoever added MONLIST as a command to NTP
servers. The command seems of such little practical use -- it returns a list of up to the last
600 IP addresses that last accessed the NTP server -- and yet it can do so much harm. If an
NTP server has its list fully populated, the response to a MONLIST request will be 206-times
larger than the request. In the attack, since the source IP address is spoofed and UDP does
not require a handshake, the amplified response is sent to the intended target. An attacker
with a 1Gbps connection can theoretically generate more than 200Gbps of DDoS traffic.

Not Just Theoretical

Monday's DDoS proved these attacks aren't just theoretical. To generate approximately
400Gbps of traffic, the attacker used 4,529 NTP servers running on 1,298 different
networks. On average, each of these servers sent 87Mbps of traffic to the intended victim
on CloudFlare's network. Remarkably, it is possible that the attacker used only a single
server running on a network that allowed source IP address spoofing to initiate the
requests.

While NTP servers that support MONLIST are less common than open DNS resolvers, they
tend to run on beefier servers with fatter connections to the network. Combined with the
high amplification factor, this allows a much smaller number of NTP servers to generate
very large attacks. For comparison, the attack that targeted Spamhaus used 30,956 open
DNS resolvers to generate a 300Gbps DDoS. On Monday, with 1/7th the number of
vulnerable servers, the attacker was able to generate an attack that was 33% larger than
the Spamhaus attack.

Globally Distributed Threat

We saw attack traffic hitting every one of CloudFlare's data centers. While we were
generally able to mitigate the attack, it was large enough that it caused network congestion
in parts of Europe. The map above shows the global distribution of the 4,529 NTP servers
used in the attack. The chart below lists the AS Numbers and names of the top 24
networks we saw traffic from in the attack, as well as the number of exploited NTP servers
running on each.

ASN Network Count

9808 CMNET-GD Guangdong Mobile Communication Co.Ltd. 136
4134 CHINANET-BACKBONE No.31,Jin-rong Street 116

16276 OVH OVH Systems 114

4837 CHINA169-BACKBONE CNCGROUP Chinal69 Backbone 81
3320 DTAG Deutsche Telekom AG 69

39116 TELEHOUSE Telehouse Inter. Corp. of Europe Ltd 61

10796 SCRR-10796 - Time Warner Cable Internet LLC 53

6830 LGI-UPC Liberty Global Operations B.V. 48
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6663 TTI-NET Euroweb Romania SA 46

9198 KAZTELECOM-AS JSC Kazakhtelecom 45
2497 I1J Internet Initiative Japan Inc. 39
3269 ASN-IBSNAZ Telecom Italia S.p.a. 39
9371 SAKURA-C SAKURA Internet Inc. 39
12322 PROXAD Free SAS 37
20057 AT&T Wireless Service 37
30811 EPiServer AB 36
137 ASGARR GARR Italian academic and research network 34
209 ASN-QWEST-US NOVARTIS-DMZ-US 33
6315 XMISSION - XMission, L.C. 33
52967 NT Brasil Tecnologia Ltda. ME 32
4713 OCN NTT Communications Corporation 31
56041 CMNET-ZHEJIANG-AP China Mobile communications corporation 31
1659 ERX-TANET-ASN1 Tiawan Academic Network (TANet) Information Center 30
4538 ERX-CERNET-BKB China Education and Research Network Center 30

At this time, we've decided not to publish the full list of the IP addresses of the NTP servers
involved in the attack out of concern that it could give even more attackers access to a
powerful weapon. However, we have published a spreadsheet with the complete list of the
networks with NTP servers that participated in the attack. While the per server
amplification makes these attacks troubling, the smaller number of servers and networks
involved gives us some hope that we can make a dent in getting them cleaned up. We are
reaching out to network operators whose resources were used in the attack to encourage
them to restrict access to their NTP servers and disable the MONLIST command.

Somewhat ironically, the large French hosting provider OVH was one of the largest sources
of our attack and also a victim of a large scale NTP amplification attack around the same
time.

Time to Clean Up the Problem

If you're a network administrator and on Monday you saw network graphs like the one in
the Tweet below then you are running a vulnerable NTP server:
https://twitter.com/NetworkNub/status/433629994351214592

You can check whether there are open NTP servers that support the MONLIST command
running on your network by visiting the Open NTP Project. Even if you don't think you're
running an NTP server, you should check your network because you may be running one
inadvertently. For example, some firmware on Supermicro's IPMI controllers shipped with
a MONLIST-enabled NTP server on by default. More details on NTP attacks and instructions
on how to disable the MONLIST command can be found on the Internet Storm Center's
NTP attack advisory.
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NTP and all other UDP-based amplification attacks rely on source IP address spoofing. If
attackers weren't able to spoof the source IP address then they would only be able to
DDoS themselves. If you're running a network then you should ensure that you are
following BCP38 and preventing packets with spoofed source addresses from leaving your
network. You can test whether your network currently follows BCP38 using tools from
MIT's the Spoofer Project. If you're running a naughty network that allows source IP
address spoofing, you can easily implement BCP38 by following the instructions listed at
BCP38.info.

Finally, if you think NTP is bad, just wait for what's next. SNMP has a theoretical 650x
amplification factor. We've already begun to see evidence attackers have begun to
experiment with using it as a DDoS vector. Buckle up.
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APPENDIX E

Stupidly Simple DDoS Protocol (SSDP)
generates 100 Gbps DDoS

28 Jun 2017 by Marek Majkowski.
Last month we shared statistics on some popular reflection attacks. Back then the average
SSDP attack size was ~12 Gbps and largest SSDP reflection we recorded was:

e 30 Mpps (millions of packets per second)
e 80 Gbps (billions of bits per second)
e using 940k reflector IPs

This changed a couple of days ago when we noticed an unusually large SSDP amplification.
It's worth deeper investigation since it crossed the symbolic threshold of 100 Gbps.

The packets per second chart during the attack looked like this:
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This packet flood lasted 38 minutes. According to our sampled netflow data it utilized 930k

reflector servers. We estimate that the during 38 minutes of the attack each reflector sent
112k packets to Cloudflare.

The reflector servers are across the globe, with a large presence in Argentina, Russia and
China. Here are the unique IPs per country:
$ cat ips-nf-ct.txt|uniqg|cut -f 2|sort|uniqg -c|sort -nr|head
439126 CN

135783 RU

74825 AR

51222 US

41353 TW

32850 CA

19558 MY

18962 CO

14234 BR

10824 KR

10334 UA

9103 IT

The reflector IP distribution across ASNs is typical. It pretty much follows the world’s largest
residential ISPs:
$ cat ips-nf-asn.txt |unig|cut -f 2|sort|uniqg -c|sort -nr|head
318405 4837 # CN China Unicom

84781 4134 # CN China Telecom

72301 22927 # AR Telefonica de Argentina

23823 3462 # TW Chunghwa Telecom

19518 6327 # CA Shaw Communications Inc.

19464 4788 # MY TM Net

18809 3816 # CO Colombia Telecomunicaciones

11328 28573 # BR Claro SA

7070 10796 # US Time Warner Cable Internet

6840 8402 # RU 0JSC "Vimpelcom"

6604 3269 # IT Telecom Italia

6377 12768 # RU JSC "ER-Telecom Holding"

What's SSDP anyway?

The attack was composed of UDP packets with source port 1900. This port is used by the
SSDP and is used by the UPnP protocols. UPnP is one of the zero-configuration
networkingprotocols. Most likely your home devices support it, allowing them to be easily
discovered by your computer or phone. When a new device (like your laptop) joins the
network, it can query the local network for specific devices, like internet gateways, audio
systems, TVs, or printers. Read more on how UPnP compares to Bonjour.


https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
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UPnP is poorly standardised, but here's a snippet from the spec about the
M-SEARCHframe - the main method for discovery:

When a control point is added to the network, the UPnP discovery protocol allows that control
point to search for devices of interest on the network. It does this by multicasting on the reserved
address and port (239.255.255.250:1900) a search message with a pattern, or target, equal to a
type or identifier for a device or service.

Responses to M-SEARCH frame:

To be found by a network search, a device shall send a unicast UDP response to the source IP
address and port that sent the request to the multicast address. Devices respond if the ST
header field of the M-SEARCH request is “ssdp:all”, “upnp:rootdevice”, “uuid:” followed by a UUID
that exactly matches the one advertised by the device, or if the M-SEARCH request matches a
device type or service type supported by the device.

This works in practice. For example, my Chrome browser regularly asks for a Smart TV |

guess:
$ sudo tcpdump -ni ethO udp and port 1900 -A

IP 192.168.1.124.53044 > 239.255.255.250.1900: UDP, length 175
M-SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900

MAN: "ssdp:discover"

MX: 1

ST: urn:dial-multiscreen-org:service:dial: 1

USER-AGENT: Google Chrome/58.0.3029.110 Windows

This frame is sent to a multicast IP address. Other devices listening on that address and
supporting this specific ST (search-target) multiscreen type are supposed to answer.

Apart from queries for specific device types, there are two "generic" ST query types:

e upnp:rootdevice: search for root devices
e ssdp:all: search for all UPnP devices and services

To emulate these queries you can run this python script (based on this work):
#1/usr/bin/env python2

import socket

import sys

dst = "239.255.255.250"
if len(sys.argv) > 1:

dst = sys.argv[1]
st = "upnp:rootdevice"
if len(sys.argv) > 2:

st = sys.argv[2]


https://www.electricmonk.nl/log/2016/07/05/exploring-upnp-with-python/
http://www.upnp-hacks.org/upnp.html
https://web.archive.org/web/20151107123618/http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf

msg = [
'M-SEARCH * HTTP/1.1',
'Host:239.255.255.250:1900',
'ST:%s' % (st,),
'Man:"ssdp:discover"’,
'MX:1',
"]

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
s.settimeout(10)
s.sendto('\r\n'.join(msg), (dst, 1900) )

while True:
try:
data, addr = s.recvfrom(32*1024)
except socket.timeout:
break
print "[+] %s\n%s" % (addr, data)

On my home network two devices show up:

$ python ssdp-query.py

[+]('192.168.1.71', 1026)

HTTP/1.1 200 OK

CACHE-CONTROL: max-age = 60

EXT:

LOCATION: http://192.168.1.71:5200/Printer.xml

SERVER: Network Printer Server UPnP/1.0 OS 1.29.00.44 06-17-2009
ST: upnp:rootdevice

USN: uuid:Samsung-Printer-1_0-mrgutenberg::upnp:rootdevice

[+] ('192.168.1.70', 36319)

HTTP/1.1 200 OK

Location: http://192.168.1.70:49154/MediaRenderer/desc.xml
Cache-Control: max-age=1800

Content-Length: 0

Server: Linux/3.2 UPnP/1.0 Network_Module/1.0 (RX-S601D)

EXT:

ST: upnp:rootdevice

USN: uuid:9ab0c000-f668-11de-9976-000adedd7411::upnp:rootdevice

The firewall

Now that we understand the basics of SSDP, understanding the reflection attack should be
easy. You see, there are in fact two ways of delivering the M-SEARCH frame:

e what we presented, over the multicast address
e directly to a UPnP/SSDP enabled host on a normal unicast address

The latter method works. We can specifically target my printer IP address:

$ python ssdp-query.py 192.168.1.71
[+] ('192.168.1.71', 1026)



HTTP/1.1 200 OK

CACHE-CONTROL: max-age = 60

EXT:

LOCATION: http://192.168.1.71:5200/Printer.xml

SERVER: Network Printer Server UPnP/1.0 OS 1.29.00.44 06-17-2009
ST: upnp:rootdevice

USN: uuid:Samsung-Printer-1_0-mrgutenberg::upnp:rootdevice

Now the problem is easily seen: the SSDP protocol does not check whether the querying
party is in the same network as the device. It will happily respond to an
M-SEARCHdelivered over the public Internet. All it takes is a tiny misconfiguration in a
firewall - port 1900 UDP open to the world - and a perfect target for UDP amplification will
be available.

Given a misconfigured target our script will happily work over the internet:
$ python ssdp-query.py 100.42.x.X

[+] ('100.42.x.x', 1900)

HTTP/1.1 200 OK

CACHE-CONTROL: max-age=120

ST: upnp:rootdevice

USN: uuid:3e55ade9-c344-4baa-841b-826bda77dcb2: :upnp:rootdevice

EXT:

SERVER: TBS/R2 UPnP/1.0 MiniUPnPd/1.2

LOCATION: http://192.168.2.1:40464/rootDesc.xml

The amplification

The real damage is done by the ssdp:all ST type though. These responses are muchlarger:
$ python ssdp-query.py 100.42.x.x ssdp:all

[+] ('100.42.x.x', 1900)

HTTP/1.1 200 OK

CACHE-CONTROL: max-age=120

ST: upnp:rootdevice

USN: uuid:3e55ade9-c344-4baa-841b-826bda77dcb2: :upnp:rootdevice

EXT:

SERVER: TBS/R2 UPnP/1.0 MiniUPnPd/1.2

LOCATION: http://192.168.2.1:40464/rootDesc.xml

[+] ("'100.42.x.x', 1900)

HTTP/1.1 200 OK

CACHE-CONTROL: max-age=120

ST: urn:schemas-upnp-org:device:InternetGatewayDevice: 1

USN:
uuid:3e55ade9-c344-4baa-841b-826bda77dcb2::urn:schemas-upnp-org:device:InternetGatewa
yDevice:1

EXT:

SERVER: TBS/R2 UPnP/1.0 MiniUPnPd/1.2

LOCATION: http://192.168.2.1:40464/rootDesc.xml

... 6 more response packets....



In this particular case, a single SSDP M-SEARCH packet triggered 8 response packets.
tcpdump view:

$ sudo tcpdump -ni en7 host 100.42.x.x -ttttt

00:00:00.000000 IP 192.168.1.200.61794 > 100.42.x.x.1900: UDP, length 88
00:00:00.197481 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 227
00:00:00.199634 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 299
00:00:00.202938 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 295
00:00:00.208425 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 275
00:00:00.209496 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 307
00:00:00.212795 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 289
00:00:00.215522 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 291
00:00:00.219190 IP 100.42.x.x.1900 > 192.168.1.200.61794: UDP, length 291

That target exposes 8x packet count amplification and 26x bandwidth amplification. Sadly,
this is typical for SSDP.

IP Spoofing

The final step for the attack is to fool the vulnerable servers to flood the target IP - not the
attacker. For that the attacker needs to spoof the source IP address on their queries.

We probed the reflector IPs used in the shown 100 Gbps+ attack. We found that out of the
920k reflector IPs, only 350k (38%) still respond to SSDP probes.

Out of the reflectors that responded, each sent on average 7 packets:

$ cat results-first-run.txt|cut -f 1|sort|uniq -c|sed -s 's# \+##g'|[cut -d " " -f 1]
~/mmhistogram -t "Response packets per IP" -p

Response packets per IP min:1.00 avg:6.99 med=8.00 max:186.00 dev:4.44 count:350337
Response packets per IP:

value [-----==========--mm oo count
1] **Xx 3.30%
2| ** 2.29%
16 | KRk 2.88%
32| 0.01%
64 | 0.00%
128 | 0.00%

The response packets had 321 bytes (+/- 29 bytes) on average. Our request packets had
110 bytes.

According to our measurements with the ssdp:all M-SEARCH attacker would be able to
achieve:

e 7x packet number amplification
e 20x bandwidth amplification


https://en.wikipedia.org/wiki/IP_address_spoofing

We can estimate the 43 Mpps/112 Gbps attack was generated with roughly:

e 6.1 Mpps of spoofing capacity
e 5.6 Gbps of spoofed bandwidth

In other words: a single well connected 10 Gbps server able to perform IP spoofing can
deliver a significant SSDP attack.

More on the SSDP servers

Since we probed the vulnerable SSDP servers, here are the most common Server header
values we received:
104833 Linux/2.4.22-1.2115.nptl UPnNP/1.0 miniupnpd/1.0
77329 System/1.0 UPnP/1.0 IGD/1.0
66639 TBS/R2 UPnP/1.0 MiniUPnPd/1.2
12863 Ubuntu/7.10 UPnP/1.0 miniupnpd/1.0
11544 ASUSTeK UPnP/1.0 MiniUPnPd/1.4
10827 miniupnpd/1.0 UPnP/1.0
8070 Linux UPnP/1.0 Huawei-ATP-IGD
7941 TBS/R2 UPnP/1.0 MiniUPnPd/1.4
7546 Net-OS 5.xx UPnP/1.0
6043 LINUX-2.6 UPnP/1.0 MiniUPnPd/1.5
5482 Ubuntu/lucid UPnP/1.0 MiniUPnPd/1.4
4720 AirTies/ASP 1.0 UPnP/1.0 miniupnpd/1.0
4667 Linux/2.6.30.9, UPnP/1.0, Portable SDK for UPnP devices/1.6.6
3334 Fedora/10 UPnP/1.0 MiniUPnPd/1.4
2814 1.0
2044 miniupnpd/1.5 UPnP/1.0
1330 1
1325 Linux/2.6.21.5, UPnP/1.0, Portable SDK for UPnP devices/1.6.6
843 Allegro-Software-RomUpnp/4.07 UPnP/1.0 IGD/1.00
776 Upnp/1.0 UPnP/1.0 IGD/1.00
675 Unspecified, UPnP/1.0, Unspecified
648 WNR2000v5 UPnP/1.0 miniupnpd/1.0
562 MIPS LINUX/2.4 UPnP/1.0 miniupnpd/1.0
518 Fedora/8 UPnP/1.0 miniupnpd/1.0
372 Tenda UPnP/1.0 miniupnpd/1.0
346 Ubuntu/10.10 UPnP/1.0 miniupnpd/1.0
330 MF60/1.0 UPnP/1.0 miniupnpd/1.0

The most common ST header values we saw:

298497 upnp:rootdevice

158442 urn:schemas-upnp-org:device:InternetGatewayDevice: 1
151642 urn:schemas-upnp-org:device: WANDevice: 1

148593 urn:schemas-upnp-org:device: WANConnectionDevice:1
147461 urn:schemas-upnp-org:service:WANCommonInterfaceConfig:1
146970 urn:schemas-upnp-org:service: WANIPConnection: 1

145602 urn:schemas-upnp-org:service:Layer3Forwarding:1



113453 urn:schemas-upnp-org:service: WANPPPConnection: 1

100961 urn:schemas-upnp-org:device:InternetGatewayDevice:

100180 urn:schemas-upnp-org:device: WANDevice:

99017 urn:schemas-upnp-org:service:WANCommonInterfaceConfig:
98112 urn:schemas-upnp-org:device: WANConnectionDevice:

97246 urn:schemas-upnp-org:service:WANPPPConnection:

96259 urn:schemas-upnp-org:service:WANIPConnection:

93987 urn:schemas-upnp-org:service:Layer3Forwarding:

91108 urn:schemas-wifialliance-org:device: WFADevice:

90818 urn:schemas-wifialliance-org:service: WFAWLANConfig:

35511 uuid:IGD{8c80f73f-4ba0-45fa-835d-042505d052be}000000000000
9822 urn:schemas-upnp-org:service: WANEthernetLinkConfig:1

7737 uuid:WAN{84807575-251b-4c02-954b-e8e2ba7216a9}000000000000
6063 urn:schemas-microsoft-com:service:0SInfo:1

The vulnerable IPs are seem to be mostly unprotected home routers.

Open SSDP is a vulnerability

It's not a novelty that allowing UDP port 1900 traffic from the Internet to your home printer
or such is not a good idea. This problem has been known since at least January 2013:

e "Security Flaws in Universal Plug and Play: Unplug, Don't Play"

Authors of SSDP clearly didn't give any thought to UDP amplification potential. There are a
number of obvious recommendations about future use of SSDP protocol:

e The authors of SSDP should answer if there is any real world use of unicast
M-SEARCHqueries. From what | understand M-SEARCH only makes practical
sense as a multicast query in local area network.

e Unicast M-SEARCH support should be either deprecated or at least rate limited,
in similar way to DNS Response Rate Limit techniques.

e M-SEARCH responses should be only delivered to local network. Responses
routed over the network make little sense and open described vulnerability.

In the meantime we recommend:

e Network administrators should ensure inbound UDP port 1900 is blocked on
firewall.

e Internet service providers should never allow IP spoofing to be performed on
their network. IP spoofing is the true root cause of the issue. See the infamous
BCP38.

e Internet service providers should allow their customers to use BGP flowspec to
rate limit inbound UDP source port 1900 traffic, to relieve congestion during
large SSDP attacks.


http://www.bcp38.info/index.php/Main_Page
https://community.rapid7.com/community/infosec/blog/2013/01/29/security-flaws-in-universal-plug-and-play-unplug-dont-play
http://www.redbarn.org/dns/ratelimits

e Internet providers should internally collect netflow protocol samples. The
netflow is needed to identify the true source of the attack. With netflow it's
trivial to answer questions like: "Which of my customers sent 6.4Mpps of traffic
to port 1900?". Due to privacy concerns we recommend collecting netflow
samples with largest possible sampling value: 1 in 64k packets. This will be
sufficient to track DDoS attacks while preserving decent privacy of single
customer connections.

e Developers should not roll out their own UDP protocols without careful
consideration of UDP amplification problems. UPnP should be properly
standardized and scrutinized.

e End users are encouraged to use the script scan their network for UPnP
enabled devices. Consider if these devices should be allowed to access to the
internet.

Furthermore, we prepared on online checking website. Click if you want to know if your
public IP address has a vulnerable SSDP service:

e https://badupnp.benjojo.co.uk/
Sadly, the most unprotected routers we saw in the described attack were from China,

Russia and Argentina, places not historically known for the most agile internet service
providers.

Summary

Cloudflare customers are fully protected from SSDP and other L3 amplification attacks.
These attacks are nicely deflected by Cloudflare anycast infrastructure and require no
special action. Unfortunately the raising of SSDP attack sizes might be a tough problem for
other Internet citizens. We should encourage our ISPs to stop IP spoofing within their
network, support BGP flowspec and configure in netflow collection.

This article is a joint work of Marek Majkowski and Ben Cartwright-Cox.

APPENDIX F

A Deep Dive Into DNS Packet Sizes: Why
Smaller Packet Sizes Keep The Internet Safe

04 Mar 2016 by Dani Grant.

Yesterday we wrote about the 400 gigabit per second attacks we see on our network.
One way that attackers DDoS websites is by repeatedly doing DNS lookups that have small queries,


https://blog.cloudflare.com/how-the-consumer-product-safety-commission-is-inadvertently-behind-the-internets-largest-ddos-attacks/
https://blog.cloudflare.com/how-the-consumer-product-safety-commission-is-inadvertently-behind-the-internets-largest-ddos-attacks/
https://badupnp.benjojo.co.uk/
https://blog.cloudflare.com/how-the-consumer-product-safety-commission-is-inadvertently-behind-the-internets-largest-ddos-attacks/
https://blog.cloudflare.com/how-the-consumer-product-safety-commission-is-inadvertently-behind-the-internets-largest-ddos-attacks/
https://blog.cloudflare.com/how-the-consumer-product-safety-commission-is-inadvertently-behind-the-internets-largest-ddos-attacks/
https://blog.cloudflare.com/how-cloudflares-architecture-allows-us-to-scale-to-stop-the-largest-attacks/

but large answers. The attackers spoof their IP address so that the DNS answers are sent to the
server they are attacking, this is called a reflection attack.

Domains with DNSSEC, because of the size of some responses, are usually ripe for this type of
abuse, and many DNS providers struggle to combat DNSSEC-based DDoS attacks. Just last
month, Akamai published a report on attacks using DNS lookups against their DNSSEC-signed .gov
domains to DDoS other domains. They say they have seen 400 of these attacks since November.

To prevent any domain on CloudFlare being abused for a DNS amplification attack in this way, we
took precautions to make sure most DNS answers we send fit in a 512 byte UDP packet, even when
the zone is signed with DNSSEC. To do this, we had to be creative in our DNSSEC implementation.
We chose a rarely-used-for-DNSSEC signature algorithm and even deprecated a DNS record type
along the way.

Elliptic Curves: Keeping It Tight

Dutch mathematician Arjen Lenstra famously talks about cryptography in terms of energy. (We've
covered him once before on our blog). He takes the amount of energy required to break a
cryptographic algorithm and compares that with how much water that energy could boil. To break a
228-bit RSA key requires less energy than it takes to boil a teaspoon of water. On the other hand, to
break a 228-bit elliptic curve key requires the amount of energy needed to boil all the water on the
earth.

With elliptic curve cryptography in the ECDSA signature algorithm, we can use smaller keys with the
same level of security as a larger RSA key. Our elliptic curve keys are 256 bits long, equivalent in
strength to a 3100 bit RSA key (most RSA keys are only 1024 or 2048 bits). You can compare
below two signed DNSKEY sets, an RSA implementation against our ECDSA one. Ours is one
quarter of the size of the matching RSA keys and signature.

As a side benefit, ECDSA is lightning fast, and our engineer Vlad Krasnov actually helped make it
even faster. By implementing ECDSA natively in assembler, he was able to speed up signing by
21x. His optimizations are now part of the standard Go crypto library as of Go version 1.6. It now
only takes us a split of a second, 0.0001 of a second, to sign records for a DNS answer.

Deprecating ANY: The Obituary Of A DNS Record Type

In Akamai’s security report, the authors draw the conclusion that DNSSEC is the only cause of the
large answers used for DDoS attacks, but the other cause of the large answers is that the attackers
use ANY queries to maximize the amplification factor. ANY queries are a built-in debugging tool,
meant to return every DNS record that exist for a name. Unfortunately, they are instead more often
used for launching large DDoS attacks.

In September, we stopped answering ANY queries and published an Internet Draft to begin the
process of making ANY deprecation an Internet standard. We did this carefully, and worked closely
with the few remaining software vendors who use ANY to ensure that we wouldn'’t affect their
production systems.

An ANY query for DNSSEC-enabled cloudflare.com returns an answer that is 231 bytes. The
alleged domain in Akamai’s paper, for comparison, returns an ANY query almost 18 times larger, at
a whopping 4016 bytes.

ECDSA + ANY



By keeping our packet size small enough to fit in a 512 byte UDP packet, we keep the domains on
us safe from being the amplification factor of a DDoS attack. If you are interested in using DNSSEC
with CloudFlare, here are some easy steps to get you setup. If you are interested in working on
technical challenges like these, we’d love to hear from you.



APPENDIX G

How the Consumer Product Safety
Commission is (Inadvertently) Behind the
Internet’s Largest DDoS Attacks

25 Aug 2016 by Matthew Prince.

inShare51

The mission of the United State's Government's Consumer Product Safety
Commission(CPSC) is to protect consumers from injury by products. It's ironic then that the
CPSC is playing an unwitting role in most of the largest DDoS attacks seen on the Internet.
To understand how, you need to understand a bit about how you launch a high volume
DDoS.

Logo of the Consumer Product Safety Commission

Amplification

DDoS attacks are inherently about an attacker sending more traffic to a victim than the
victim can handle. The challenge for an attacker is to find a way to generate a large amount
of traffic. Launching a DDoS attack is a criminal act, so an attacker can't simply go sign up
for large transit contracts. Instead, attackers find ways to leverage other people's
resources.


http://www.cpsc.gov/
https://blog.cloudflare.com/author/matthew-prince/
http://www.cpsc.gov/
http://www.cpsc.gov/

One of the most effective strategies is known as an amplification attack. In these attacks,
an attacker can amplify their resources by reflecting them off other resources online that
magnify the level of traffic. The most popular amplification vector is known as DNS
reflection.

DNS Reflection

We've written about DNS reflection attacks in detail before. The basics are that an attacker
generates DNS requests from a network that allows source IP address spoofing. The
attacker forges the victim's IP as the source of the DNS requests. The attacker sends these
requests to DNS resolvers that aren't locked down and respond to requests from any
network. The DNS resolvers receive the requests and then send the responses back to the
spoofed IP of the victim.

This technique "amplifies" an attack because a small DNS request will generate a larger
response. How much larger depends on the size of the DNS record that's being queried.
And here's where the Consumer Product Safety Commission comes in.

#1 Among DDoS Attackers

You see, the CPSC's DNS server will respond with a very large DNS record when sent a very

small DNS query. This DNS query is only 65 bytes:
dig ANY cpsc.gov +notcp +bufsize=65535 @X.X.X.X

Substitute X.X.X.X for one of the 13 million currently open DNS resolvers and you'll get back
a response that is 4,426 bytes. To generate 68Gbps of traffic to a victim requires only
1Gbps of requests with a spoofed source IP address to open resolvers for the CPSC.gov
DNS record. That's an amplification factor of 68x.

Now, lots of people have large DNS records, but the CPSC.gov record is very large and
particularly popular among attackers. Based on both data about the large volumetric
attacks we see hitting CloudFlare, as well as data from various resolver honey pots we run,
approximately 94% of the DNS reflection attack requests we see are for CPSC.gov. (The
next most popular are httrack.com which is used by 2.9% of attacker requests and isc.org
which is used by 0.5%.)

At one level there's nothing the CPSC can do to prevent attackers from using their DNS
record to launch attacks. CPSC's resources aren't being queried directly by the attackers so
they can't block the requests themselves. However, they could construct their DNS record
more carefully to make it smaller and therefore less attractive to attackers.

To see how, we can walk through the CPSC DNS record entry by entry and make
recommendations on how to reduce its size.

The CPSC's Ginormous Zone


https://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack/
http://openresolverproject.org/

Here's the CPSC.gov's entire 4,426-byte DNS response which you get from running the ANY
DNS query above against an open resolver (scroll to the left in the grey boxes below to see
the full DNS record):

CpscC.gov. 18894 IN SOA auth00.ns.uu.net. hostmaster.uu.net. 994622 1800 600
1728000 21600

cpsc.gov. 18894 IN A 63.74.109.2

CpsC.gov. 18894 IN AAAA 2600:803:240::2

cpsc.gov. 18894 IN NS auth61l.ns.uu.net.

cpsc.gov. 18894 IN NS auth00.ns.uu.net.

cpsc.gov. 18894 IN MX 5 stagg.cpsc.gov.

cpsc.gov. 18894 IN MX 5 hormel.cpsc.gov.

cpsc.gov. 18894 IN TXT "v=spfl ip4:63.74.109.6 ip4:63.74.109.10 ip4:63.74.109.20 mx
a:list.cpsc.gov -all"

Ccpsc.gov. 18894 IN DNSKEY 256 37

AwEAAbpeSszphwwkOIIn1ha6DE/W3YRXFR2vsMiORKhgq5x9t487UJc0c
eamz5TZj6KV5/tzL8/Qr2jnTaQmpWtIHbnFOkgpxeZIR+wzaNbMtEH30
UF5BDv9BYya0W9I+40dS48996kedhEvL6KwmMelB7FH6QPdOixyhpO+ci
5vew9IzTESEs]2X2uJrCqo3UacsHyYIzaTSXPpfwizQCql4VySq6+im1
74QaYw/FU4aADAV3R2KQvsR/ul0a700ihxDDAvtYG7SZvotW3ASZFscd
4B6Yd84RMZC3yGdGtyrSD6tZsilZoXhLQkkfOkOTWCjPvD80oPm+yYiGI Cm64eM3kflU=
cpsc.gov. 18894 IN DNSKEY 256 3 7
AWEAAXQUfP1/CdN5/YYXxWdePx3dWhhY7RmzxEfGXSZ0ea5BZoOXTLHd
giWIm90ORNZ5hC+kaDRoYjgZXnkZzOkhQhCDBwm202I0GBjBLMMtbm9hNK
b2WGE8WC/E3j56YfepaMSzhxICulxgY8JeYhmfpc3C5Z29Mm20Pm91cwU
W2ZzZY8i5f2F04tNBBymXTfuOmytCvp/dNxUjM45svY +SNRIItgcy07qBj
T/GHDglEc6i]dBtvik3Nd4RfFfI+ftG8xSxfna3Nv4BVdYxPkE4us3ti
0dv/Ejwl9kuoXhT7/Ydpdze/boWmIuwjn3a66Afg7CHtmYyW6InLz57r tzUTGUdStgc=
cpsc.gov. 18894 IN DNSKEY 257 37
AWEAAZztz17cVspxUk8egfYEFLuyPXVETIPdT2PAuy+cZTk3afTS7cda
Tnsk43AIqgnCkTvHE9M4gVuOhNmFjPIABPkfmaCtOzyqVmLjxb36IMxJ
TnhBPBYjWYOHrBAdEGCGG7eZzY4II9kAMPIXE1OmMMI9iM0dQSzamITEWN
890PptHNIbjz8k7nQO3xyzXreamjhIW/2ilJhM+CdHe2CgMhPtf8b4QR
8CulBMHO07gvsTKIjuvQLiIS1ThQYYpmLgriiWjnQFum2FJe6]7x8joDAq
YCzbQUAGSyYIPp6FYibaG70Y62fIf9DNgHRMH/3c79DWI9RmMwzFggjfKLf y4hOgRbsVFc=
cpsc.gov. 18894 IN DNSKEY 257 37
AWEAAX5Tor9V7TnhfUMAL67reT+IFYd+4ciQv/UnvZbNgj7DgDulPpcl
Owh6ypAIdCYgTXkF2Qt+an9WVp+Khsp2wRCCOhvGIUR9sOGdzxumDUCT
Uru2dxHAQINn1QYSjuT8huMDDyBImnoA4AY1Te86mcE1Jwpo+S9KoB23Z
JgnMedU+6i8Qm9cdGLNM7nqEXhgKgmKc/387UFdh25jltsg0d2gOK//q
k2HfLdDqv8XIrlacfMsSXniVwK7E6mtqcfbF518M2bl6UFJWXuxp+cU8
0WdmGIiQfxmLvm62a2aVs91zR6qGg0Ce5bxbx68v6gYTgIOUBmM8ERYtZ3 T2jzc0QOKQc=
Cpsc.gov. 18894 IN NSEC3PARAM 1 0 12 AABBCCDD

CpsC.gov. 18894 IN RRSIG NS 7 2 21600 20160824030507 20160817020507 53799
cpsc.gov. €4Nrl]gq0j7ZcHb/UAMOE34nuPfnbgCW6FARIM/5QKwgYDqgZpCixaVQgL
S9KGLR/eYQsp+BdPQibdLD3Ef2ICqQmBI0gRIyxh5Sbg7XiXnObJXgtR
+vIJuhVjzLtYfAGGicAm3MfYzcxk2/Usr8rwr/EakzhMLEr03Tshj4uwm
WaRQ97M3R6dyTDvI35X0m76KeWAyYIS/Z2WmbGzNWUNn8qpgerD8d1CIrP
R7S5psgTMFIApD5I6mfljuvZ5B+RRs7VhjYOtn6IKKoBLMgHxZAtwf1ln
td9Ho8anT3LIrrB1b/NZsRWhVdGLDIohDKzM9qgabwQkoHg+/zrRrapZ 5NiUIQ==
CpsC.gov. 18894 IN RRSIG MX 7 2 21600 20160824030507 20160817020507 53799
cpsc.gov. JAYmQYaSMOkU7VfwTgIb9CHO3nBBjkiYQ4zOoRIaD8uOASMaweXhy/H2
75kxrhvwYs9VRORXOITal69uVIOvN74cffudlIfiomIfSSVvo31Zz6dDM
bpgmpdXRdA6DEFVpmrHfTUK1sbKGB5qo3Yxiz38VzcZr7hclApmC/Bf0/



/luymk7BeCvtGjLVamRaaHKD76f/FA+0dkLvNOZITqrj36wZwOb1]Tv8
XAl61dVxJI3R3z8TCtWm8+Za5nTzt3oNjad3Hf4g9r+88ugCvCcOibSU
ujUH1sdc3/Uvr7ZEGT+51a6H6BkoctWwAIimkN6CwbMOM8GhgwNiISXov 5QKO+Q==
CpscC.gov. 18894 IN RRSIG TXT 7 2 21600 20160824030507 20160817020507 53799
cpsc.gov. CYoU8McQOKcy82SKfTXPfT8AnheHQmtdf4m0se/Ht7q64l16ifISkh30
VGRmMrQIgiMdAKaPIRMU7IiGftMUntYKDu7RivVG18JokePDYHHO9VYj]ss
nQf92Reu08dOwm/Ica9cM1naGL1RDzvBbDkQkucyjle2fvdO0ONpj+vBG
H5kyLULmMbkfD2PVL6c5F+eEhyGCF/IKPveaglymkwBMGRM+Za+LYOelLY
SkB1zwL5GodnHj/uaZfkGxT5ulNOnukMx536719pjf7ig/oMdaf8MySo
hGQCjseS50N6dRYuAzkOVDwdc5/Qw2jWgQIQUUH213AAYKz6eZXZtLAtL +AfIlUQ==
CpscC.gov. 18894 IN RRSIG A 7 221600 20160824030507 20160817020507 53799
cpsc.gov. DOLz8p1/pyr3LByKjHKZEcrgQwDgkB+Gg3nlcgSbFp8ChIenAjBGBvXy
24u7atI55ZxTqF6dtQE03+D9a30piWeDm5U2t0g/VTHtwFFfi2h5DwQx
WNxh6/71h7uzoidiBr4cKEkZSjB4F+bRvigJomxSdGPA9ZrQFZv4RcCb
B8InJJZwyu9gfT767nt3y0q+0s/nlr19vyicmt5MiGOWQpxBn/ZhUG2u
DYf6WkZVV02i3nrD9PmMpOjeDuj4gO0DKAIhyPzPM5L8CKNDISxGAdAHY +
auOJUFRPan3TGQgmgaqgaEs/8HLIRroQSgafuRJCOOHNW97p91zXX2krl AtDHgw==
CpscC.gov. 18894 IN RRSIG AAAA 7 2 21600 20160824030507 20160817020507 53799
cpsc.gov. ANNB5Mw+iU6b2TD/3ULnt2LR138Vvd80BaYuOX765TNxpsoPosTxbls1
n6810gqVvkHxR+uFafmrHA9PHOw]avEgmwSk4TyKbiTdu5fYO+wnROtXr
FISBARAALvmMunyZ49aaEQUa0TUgKyNQIKoNktnfiLFhcFpsfQD678FGm3
IKtFnFpj3HVM3Y3vkfKORNgHEYT3708EK5cIbK4YZ3UE/AJwgBEqUt7x
xca51gRK3IW0/MBRoargRbg1zgVxhNCnnxWk59uMEEROwePsQK9XAMI1
9QjpXIPFW+0426pFgbUTQyymwTjHFu2G8yzJas5g2r+o0QShPTR80K6WG rmNbCA==
Cpsc.gov. 18894 IN RRSIG SOA 7 2 21600 20160824030507 20160817020507 53799
cpsc.gov. I7umzZbpbUnh24bvphYPOK70imTyDFxc5QgOEDVVCSkmtVMhRaOUQ0eiSO
6b/O3ExcMhLOxn+D+/Xs1R7z9zPsKrzvGCfqotkxu8L1mRpAmjgr21WH
mEzXftcx+IbSrOCw0a7YuPyBGqlW3f8kb/UHcI7ykqk08xvglD2177PV
TgI590YsZyufRhfChcFxEyhBY2LZ40/UO5Tw8Lg5HH/90GtAOFHUM1To
v/CelLBOaATrZNygZINKmHIsP6Mm8j83jM4bRNxLGPs8VjpDbKVAHtROq
aXR0Zy81zNs0eWfs4vThdOf56nCUNA/HiwlVNgmbO219CCMKQxoBBuY+ FYCWfA==
Cpsc.gov. 18894 IN RRSIG DNSKEY 7 2 21600 20160824030507 20160817020507
53799 cpsc.gov. HITGZb9hSEwtxLayRdgxBkS+1jZIx/2FbsGaNJREfijFf7HTX/gpmXil
g2DcVSvXwh61473YKKpvdIeOLOfgIGAONWaO5M3FVeKbwRk4OENdKTEG
Vwm/uB8Av0alLsxD8YRvprPKxi7YxVDta7/cRMX1vP4ULQHrAbrl5xlbu
SzrlwK5b1BDoil3gfPNVbpHg2NMuqyp/hbFzUfWzvRNbLG3PJZfUEppl
QTzInHNBONKmMS00RW40Uj8la2Zu6BGIOjB/0IktrLyxRKHI2KNZDal+o0
O0pKr68/gY2j7EfJwWrrohieG5LHfisCdTgaqs1zZbYgv+CAAI9hvq6v] S5xrFxA==

Cpsc.gov. 18894 IN RRSIG DNSKEY 7 2 21600 20160824030507 20160817020507
58273 cpsc.gov. DIWHCCOre6XY3+MzRDYplJ2nlo2bWczGkIpxvAlyXhUivz8Qlv5EmK1mtV
3YTislUzE9qWQTDOMoatcmQHVgZiHZG9d7w8/5XzBv3YuAqINVUKs5QF
7YFBfF/acQCI40/pEyDhwNn5NbC]3kpIBo7KSHBIpo9GNMnVQMmcK6bo
UCeXEel9Z1cnu/9XiD8jVSyVEMSsOKdjDmMKEXNXgChVUWCr6+oWn8g/T
1SCUHF5mWn7r/ZgGPAyBwzolMA/f9qdEBighiOz/DNe5dSKHAr/3Cf78
AJIFVEPe+Yn+KsRo14WLzzfuNT2NZp/nQ6TIHVLC04uDMXeimjQiHMIZ 8QDQzw==
cpsc.gov. 18894 IN RRSIG NSEC3PARAM 7 2 21600 20160824030507
20160817020507 53799 cpsc.gov.
ink6+sysDZdHK+1Ntfllouw2I7nAvqiV+9uPQI7O0MFdGMSIZ16DIi7v
z81S+yTp3diXZv+m4j0wTFSGtcN3Zte14jC+KI+SI2SRmfXedgcAXcZW
QrPYgDps2C4jxxytxePKxHUDKLuUSsxtUFmonOWKJuC2p7UgGDhsa5AHS
XB8SoUX5ezgWjrSZgUmA7sWDE8szlvOtv1DtIKR62RIXQEOckd7z2HKh
0Qe5fZx1C1leoR+PpgileNiC+Dgh3Q4FYcCzvSfY/rtZ88dyg8DKjotV1
RMXYDR8+x18qSqAKIONIXLIdumVTKBcC3rzTUKdOPLj5/sdbyaYo6X2mn RpHQXg==
CpsC.gov. 893 IN RRSIG DS 8 2 3600 20160824041014 20160817041014 64415 gov.



c78BIiQZ0L8C190aNWIRtmr1/2cnL9yap0tcC4WPgKTtzluj4esJaN7u
PZkKgaQMEOBuUImMPs94s/IKy0IJmWrobApCWPVjhtHgOE4m8UWsBbaORIX
Ihg8JuS80rHFdPU6Y4ub6Gu2ShTmES5eM+0wE1L5KKjt2co+Wa7AN4W2Kv Udo=

CpscC.gov. 893 IN DS 58273 7 1 75F81A67F1D76F017B02689E9586FCF3A68F655F
cpsc.gov. 893 IN DS 582737 2
A04919AA51B4395014E2753430A6DD6AF7585CE2C5C2E693ESADD4DE C1365DC9
cpsc.gov. 893 IN DS 277937 2
C078BB7D7A46B0654A7D83755BA6FAB6AAS6DAC4CB4D94B6A3562B67 BA7C285C
Ccpsc.gov. 893 IN DS 27793 7 1 E148C892A62ABF2B9157293DA4EE270D9880C238

You may get the records back in a different order, but you should see something similar if
you run the same ANY query.

Walking through the DNS zone file line-by-line you can see the mistakes that the CPSC has
made that bloat its record and learn a bit about DNS and, in particular, DNSSEC.

The Good
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Let's start with the good. Here are the first eight records, which are pretty standard and
can't be optimized much.

cpsc.gov. 18894 IN SOA auth00.ns.uu.net. hostmaster.uu.net. 994622 1800 600
1728000 21600

cpsc.gov. 18894 IN A 63.74.109.2

cpsc.gov. 18894 IN AAAA 2600:803:240::2

CpsSC.gov. 18894 IN NS auth6l.ns.uu.net.

cpsc.gov. 18894 IN NS auth00.ns.uu.net.

cpsc.gov. 18894 IN MX 5 stagg.cpsc.gov.

cpsc.gov. 18894 IN MX 5 hormel.cpsc.gov.

CpscC.gov. 18894 IN TXT "v=spfl ip4:63.74.109.6 ip4:63.74.109.10 ip4:63.74.109.20 mx

a:list.cpsc.gov -all"

These first eight records are bread and butter DNS: SOA, A, AAAA, NS, MX, and TXT. If you
want a quick refresher on these basic DNS records, read on. Otherwise, you can skip to the
next section ("The Bad") to see where the DNSSEC mess begins.

The first record is the SOA record. SOA stands for Start of Authority. Walking through the
record left-to-right, the number 18894 — which you'll see appears next to all records — is
the TTL (Time to Live) at the moment for the particular resolver | queried. That number
represents the seconds until the resolver needs to fetch another result from authoritative


https://blog.cloudflare.com/how-the-consumer-product-safety-commission-is-inadvertently-behind-the-internets-largest-ddos-attacks/#thebad

DNS server. If | queried the same resolver 10 seconds later, the number would be 18884 —
10 seconds less than it had been before. If you query a different resolver you'll likely get
another number that is somewhere between 21600 (the max TTL the CPSC.gov has
specified) and 0. When the number reaches 0, the resolver will query the authoritative
name server, update its cache, and reset the TTL to 21600 — the maximum TTL specified

for the record.
CpscC.gov. 18894 IN SOA auth00.ns.uu.net. hostmaster.uu.net. 994622 1800 600
1728000 21600

Continuing on the SOA record, next up is "IN" — which also appears on every DNS record
in the CPSC zone. IN stands for "Internet Class." DNS predated the Internet, so there are
other classes that are possible, but IN is the only class you'll see in common use today.
After "IN" comes "SOA" which designates this record type.

The next entries are the contents of the SOA record. The first entry specifies the primary
authoritative name server for the domain ("auth00.ns.uu.net."). The second is the email
address of the name server's administrator ("hostmaster.uu.net." means
hostmaster@uu.net is the name server's administrator's email). "994622" is the zone serial
number, which other name servers use to make sure they're in sync with the primary
authoritative name server. "1800" is the refresh interval, specifying the number of seconds
before non-primary name servers should check to see if the zone has changed. "600" is the
retry interval, specifying the number of seconds to wait if a refresh failed. "1728000" is the
number of seconds that non-primary name servers can serve a zone if they've failed to
reach the primary name server. In practice with modern DNS setups, none of these
numbers end up having much of an impact.

The last number in the SOA record, however, is important. "21600" is the length of time in
seconds a negative result should be cached by recursive resolvers. For example, if you
query "12345.cpsc.gov" — a record that doesn't exist — then the resolver you query will
store the fact that the record doesn't exist for 21600 seconds.

SOA records look complicated but, in practice, only the last number — specifying the
number of seconds that a negative result should be cached — has an impact on modern
DNS implementations.

The other records in this group of 8 are less cryptic than SOA so we can quickly work
through how they work.

Ccpsc.gov. 18894 IN A 63.74.109.2
cpsc.gov. 18894 IN AAAA 2600:803:240::2
cpsc.gov. 18894 IN NS auth6l.ns.uu.net.
cpsc.gov. 18894 IN NS auth00.ns.uu.net.

The A and AAAA records are "anchor" records which specify the IP addresses responsible
for the domain. A records are for IPv4 addresses — in this case 63.74.109.2 — and AAAA
records are for IPv6 addresses — in this case 2600:803:240::2. The two NS entries define
the name servers responsible for the domain ("auth00.ns.uu.net" which is primary as
specified by the SOA record, and "auth61.ns.uu.net" which is secondary).



CpscC.gov. 18894 IN MX 5 stagg.cpsc.gov.
CpscC.govV. 18894 IN MX 5 hormel.cpsc.gov.

The two MX records specify the mail servers responsible for email sent to the domain
("hormel.cpsc.gov" and "stagg.cpsc.gov" — someone at the CPSC seems to have a sense of
humor as Hormel is the maker of the pork product spam and "Stagg" is a brand of chili
also made by Hormel). The number "5" in both MX records is the weight of that mail
server. The lower the number the more it will be preferred. Since these are equally

weighted, email will be load balanced equally between the two.
cpsc.gov. 18894 IN TXT "v=spfl ip4:63.74.109.6 ip4:63.74.109.10 ip4:63.74.109.20 mx
a:list.cpsc.gov -all"

Not much from the above could be optimized. The next record is special kind of TXT record
known as a SPF record. It specifies what domains or IPs are allowed to send email on
behalf of CPSC.gov. In this case, three IP addresses (63.74.109.6, 63.74.109.10 &
63.74.109.20), the MX records (Hormel & Stagg), and the A record for the subdomain
(lists.cpsc.gov). The "-all" at the end means mail sent from other domains or IPs not
specified here should fail. Alternatives could be "~all" which would soft-fail mail sent from
other domains/IPs, or "+all" which would allow mail to be sent from any domain/IP —
which would effectively render the SPF record useless.

There's a tiny optimization that CPSC.gov could make by listing one CIDR (63.74.109.0/24)

rather than each of the three IPs. By doing so they'd save 15 bytes:
CPSC.gov. 18894 IN TXT "v=spfl ip4:63.74.109.0/24 mx a:list.cpsc.gov -all"

However, as you'll see, that's hardly worth the effort compared with other optimizations
they could make.

The Bad
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The misconfiguration of the CPSC.gov DNS largely involves how they've setup DNSSEC.
DNSSEC is the mechanism to sign DNS records and help prevent cache poisoning. Each
record in the DNS zone needs to be signed. To accomplish this you need RRSIG records
and a simple change in their configuration could cut the size of the DDoS attacks the CPSC
is indirectly responsible for nearly in half.



The signatures for each record are included as RRSIG records. Here's an example of the
RRSIG record signing CPSC.gov's SOA record (again, scroll to the left in the box to see the
whole record):

Ccpsc.gov. 18894 IN RRSIG SOA 7 2 21600 20160824030507 20160817020507 53799
cpsc.gov. I7umZbpbUnh24bvphYP9K70imTyDFxc5QgOEDVVCSkmtVMhRaOUOQeiSO
6b/O3ExcMhLOXxn+D+/Xs1R7z9zPsKrzvGCfqotkxu8L1mRpAmjgr21WH
mEzXftcx+IbSrOCwOa7YuPyBGqIW3f8kb/UHcI7ykqk08xvglD2177PV
TgI590YsZyufRhfChcFxEyhBY2LZ40/UO5Tw8Lg5HH/90GtAOFHUM1To
v/CeLBOaATrZNygZINKmHIsP6Mm8j83jM4bRNXLGPs8VjpDbKVAHtROq
aXR0Zy81zNs0eWfs4vThdOf56nCUNA/HiwlVNgmbO219CCMKQxoBBuY+ FYCWfA==

Let's walk through this RRSIG record. Just like with the previous records "18894" is the TTL
in seconds, "IN" stands for "Internet Class", and RRSIG is the type of DNS record. "SOA"
here specifies the type of record this signature applies to. That's easy. However, after that,
things get cryptic (both literally and metaphorically).

The "7" here specifies the signature algorithm being used. By the DNSSEC specification, the
7th zone signing algorithm is: RSASHA1-NSEC3-SHAT.

Here's a list of the 10 current algorithms (represented by 14 numbers, just to be confusing)
that can be used for signing public DNS records along with the number — or range of
numbers if the signatures can be of variable lengths — of bytes each signature generates:

RSA/MD5 / 128-512 bytes (deprecated)
[Not used for RRSIG records]

DSA/SHA1 / 41 bytes

[Reserved]

RSA/SHA-1 /7 128-512 bytes
DSA-NSEC3-SHA1 / 328 bits
RSASHAT-NSEC3-SHA1 / 128-512 bytes
RSA/SHA-256 / 128-512 bytes

9. [Reserved]

10.RSA/SHA-512 / 128-512 bytes
11.[Reserved]

12.GOST R 34.10-2001 / 64 bytes

13.ECDSA Curve P-256 with SHA-256 / 64 bytes
14.ECDSA Curve P-384 with SHA-384 / 96 bytes

N AWN -

Algorithm 7 allows the signer to specify a key length between 128 and 512 bytes. The CPSC
specifies a key length of 256 bytes, which, today, for RSA is considered secure.
Unfortunately, that means they have a 256-byte signature for every RRSIG record.
Compare that with Algorithm 13 which, for a higher level of security, would produce only a
64-byte signature — one fourth the size per RRSIG record.


http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml

Returning to the RRSIG record, the "2" (after the "7") represents the number of "labels" in
the domain being signed. In this case, the domain is cpsc.gov, which is 2 labels deep. If it
were www.cpsc.gov then it would be 3 labels. a.b.cpsc.gov would be 4 labels.

"21600" represents the TTL that was used when the signature was originally calculated.
Since the TTL could be different for each resolver's response, the TTL value needs to be set
to a default to ensure that the signature is calculated consistently.

The next two numbers are timestamps. The first (20160824030507) represents the time
this signature will expire (24 August 2016 at 03:05:07 UTC). The second (20160817020507)
represents the time this signature became valid (17 August 2016 at 02:05:07 UTC).

"53799" is a checksum on the DNSKEY that was used to sign this record. This checksum is
used to more quickly find the DNSKEY that was used to sign this particular record when
more than one key is returned. (More on DNSKEYs in the next section.)

After the checksum is "cpsc.gov." which is the root domain. This root domain is included
regardless of the number of subdomains (e.g., cpsc.gov, www.cpsc.gov, and a.b.cpsc.gov
would all have "cpsc.gov." listed as the root domain). This specifies where to find the
DNSKEY records that could have signed this record.

Next up is the signature itself. In this case, the signature is encoded in base64 and 256
bytes long. The base64 encoding means that the 256 bytes turns into 344 on the wire.

Stepping back, the easy optimization here for the RRSIG record would be to pick a better
signature algorithm. By choosing Algorithm 13, rather than Algorithm 7, the CPSC could
save 192 bytes per RRSIG record. We've written previously about why we use Algorithm 13
for CloudFlare's DNSSEC implementation.

Doing so here would add up because there are ten RRSIG records in the CPSC's zone in
order to sign each of the other records (e.g., A, AAAA, NS, MX, etc...).

Just by switching to a better encryption algorithm the CPSC could increase the security of
their DNS zone and save 1,920 bytes per DNS response. That small change alone would cut

the maximum possible DNS reflection attack possible with the CPSC's zone by 44 percent.

While that's the biggest savings, choosing a less optimal outcome can't be considered an
actual mistake. Unfortunately, the CPSC's zone has some ugly mistakes as well.

The Ugly


https://www.cloudflare.com/dnssec/ecdsa-and-dnssec/
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The RRSIG records discussed in the previous section need to be verified with a public key.
These public keys are stored as DNSKEY records. For the CPSC, there are four DNSKEYs
that each look like this:

cpsc.gov. 18894 IN DNSKEY 256 3 7
AwWEAAbpeSszphwwkOIIn1ha6DE/W3YRXFR2vsMiORKhg5x9t487UJc0c
eamz5TZj6KV5/tzL8/Qr2jnTaQmpWtIJHbnFOkgpxeZIR+wzaNbMtEH30
UF5BDVv9BYya0W9I+40dS48996kedhEvL6KwmMelB7FH6QPdOixyhpO+ci
5vew9IzTESEs]2X2ulJrCqo3UacsHyYIzaTSXPpfwizQCql4VySg6+im1
74QaYw/FU4aADAV3R2KQvsR/ul0a700ihxDDAvtYG7SZvotW3ASZFscd
4B6Yd84RMZC3yGdGtyrSD6tZsilZoXhLQkkfOkOTWCjPvD80oPm+yYiGI Cm64eM3kflU=

Walking through the record they're similarly formatted to RRSIG records. Once again,
18894 is the TTL on the record, the record type is DNSKEY and that's followed by three
numbers: 256, 3 and 7. These are the flags field, protocol, and algorithm.

The flags field is 16-bits wide representing a number of potential boolean flags. Only two
bits of this 16-bit field are currently assigned for use with the rest reserved for the future. A
value of 256 (or 0000000010000000 or only the 9th flag set to true) indicates that this
DNSKEY holds a key that can be used to verify RRSIGs. The protocol requires a 16-bit
number so there's no optimization possible here.

The protocol field is 3. That is the only valid value for this field in a DNSKEY record. As the

RFC says:

The Protocol Field MUST have value 3, and the DNSKEY RR MUST be
treated as invalid during signature verification if it is found

to be some value other than 3.

Again, that seems a bit arbitrary but it's what the protocol requires so there's no
optimization.

Finally, the algorithm field is 7 which indicates RSASHA1-NSEC3-SHA1. So, it should be an
RSA public key formatted according to RFC3110.

Passing it through a base64 decoder and hexdump we can take a look inside:
00000000 03 01 00 01 ba 5e 4a cc €9 87 Oc 24 38 82 67 d6 |..... AJ....$8.9.|
00000010 16 ba Oc 4f d6 dd 84 57 15 1d af bO c8 b4 44 a8 |...O0...W...... D.|
00000020 6ae7 1f6de3 ced4 25 cd 1c 79 a9 b3 e5 36 63 [j..m...%..y...6C|


https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml#dns-sec-alg-numbers-1
https://tools.ietf.org/html/rfc4034#section-2
https://tools.ietf.org/html/rfc3110
https://tools.ietf.org/html/rfc4034#section-2

00000030 e8 a5 79 fe dc cb f3 f4 2b da 39 d3 69 09 a9 5a |[..y.....+.9.i..Z|
00000040 d2 47 6e 71 74 92 aa 71 79 92 11 fb Oc da 35 b3 |.Gnqt..qy.....5.]
00000050 2d 10 7d f4 50 5e 41 Oe ff 41 c9 ad 16 f4 8f b8 |-.}.PMA..A...... |
00000060 d1 d4 b8 f3 df 7a 91 e7 61 12 f2 fa 2b 09 8c 7a |..... z..a...+..z|
00000070 50 7b 14 7e 90 3d dd 22 c7 28 69 d3 e7 22 e6 7 |P{.~.=.".(i.."..]
00000080 b0 f6 5c d3 11 21 2c 27 65 f6 b8 9a c2 aa 8d d4 |[..\..!,'e....... |
00000090 69 cb 07 c9 82 33 69 34 97 3e 97 f0 8b 34 02 aa |i....3i4.>...4..|
000000a0 5e 15 c9 2a ba fa 29 b5 ef 84 1a 63 0f c5 53 86 |~..*..)....c..S.|
000000b0 80 Oc Ob f7 47 62 90 be c4 7f b8 8d 1a ee 83 a2 |....Gb.......... |
000000cO 87 10 c3 02 fb 58 1b b4 99 be 8b 56 dc 04 99 16 |..... WaooooWoooa|
000000d0 c7 1d e0 1e 98 77 ce 11 31 90 b7 c8 67 46 b7 2a |..... w..1...gF.*]|
000000e0 d2 Of ab 59 b2 22 59 a1l 78 4b 42 49 1f d2 43 93 |...Y."Y.xKBI..C.|
000000f0 58 28 cf bc 3f 28 3e 6f b2 62 21 88 0a 6e b8 78 [|X(..?(>o0.b!..n.x|
00000100 cd e4 7e 55 [..~U]|

Notice that the first four bytes are 03 01 00 01. That indicates an exponent of 65537 (03
means three bytes of exponent, 010001 in hex is 65537) which is very common for the RSA
algorithm. The rest of the record consists of 256 bytes (2,048 bits). These 2,048 bits are the
modulus part of the RSA key. Thus this is a 2,048 bit key.

Like with RRSIG, the CPSC could have better security and a shorter record if they specified
a more efficient algorithm for their DNSKEY records. Using Algorithm 13 would save 192
bytes per DNSKEY, or 768 bytes across the 4 records.

But there's the rub: the CPSC doesn't need to have 4 DNSKEY records at all. Except during a
key rollover, there should generally only be 2 DNSKEY records. In the CPSC's case, one of
the DNSKEYs (id 59364) isn't signing anything. Another of the DNSKEYs (id 27793) is
redundant. In other words, the CPSC includes 552 bytes of completely worthless data in
every DNS record. Just eliminating these two useless records would cut the maximum size
of a DNS Amplification DDoS attack using the CPSC's zone by almost 13 percent.

You can visualize the chain of how DNSSEC records are used to sign each other by using a
tool provided by DNSVIZ. The diagram below shows how the two unused DNSKEYs don't
actually sign any records.

Unused DNSKEY DNSKEY ™ Unused DNSKEY
1 alg=7,id=58273 ‘
DNSKEY DNSKEY ) DNSKEY
alg=7,id=59364 alg=7,id=53799 g alg=7,id=27793
Gpsc.govﬁMX) Gpsc.govﬁ)('l"j (cpsc.gov!SDA) E;psc.gov#\) (cpsc.gow’AAAA) [cpsc.gow‘NS)

A Better CPSC Zone



http://dnsviz.net/d/cpsc.gov/dnssec/

There are a handful of other minor optimizations. Add them all up and the CPSC Zone
could be much smaller. At CloudFlare, we've worked to optimize the size and performance
of our zone records. We used our automated zone generator on the CPSC and got the
following zone file:

Cpsc.gov. 281 IN A 104.27.142.66
Ccpsc.gov. 281 IN A 104.27.143.66
CpscC.gov. 281 IN RRSIG A 13 2 300 20160402121755 20160331101755 35273 cpsc.gov.

xYIVr9iNMm50wgoGbMaG76QNyZk2aU2STmzxIUGe09GILYEqnIDW6EYLK
pyAeMgHODKuxt83dKDUeB0ObgvSPCyQ==

cpsc.gov. 278 IN AAAA 2400:cb00:2048:1::681b:8e42
cpsc.gov. 278 IN AAAA 2400:cb00:2048:1::681b:8f42
CpsC.gov. 278 IN RRSIG AAAA 13 2 300 20160402121752 20160331101752 35273

cpsc.gov. LHmzdf6AgqsrBVT5ejyoRt2oruXuaHkavhvoNHigr2OXALnquouOfHsdq
gRIHgGQ1mkWRbel3nwIwDnWbInbIhkg==

cpsc.gov. 272 IN MX 5 stagg.cpsc.gov.
CpscC.gov. 272 IN MX 5 hormel.cpsc.gov.
CpscC.gov. 272 IN RRSIG MX 13 2 300 20160402121746 20160331101746 35273

cpsc.gov. jmAvZk3bMxcgBECvvnhC7Xn2gtdvInrRqj3xypzQ4Kona3tzs8H5+1Bp
a9X+TbclGs1zglny9UjybVUws+YTqw==

Ccpsc.gov. 86391 IN SOA abby.ns.cloudflare.com. dns.cloudflare.com. 2021076894 10000
2400 604800 3600
Cpsc.gov. 86391 IN RRSIG SOA 13 2 86400 20160402121805 20160331101805 35273

cpsc.gov. SrUvxJjIRvbAhFUXIEF6pbilXKLN/gzYcsyi4yYRR5089k73nMv5mYZr
vIi+uaPZe8Qht6NnuNWRHhrYxQiUpLw==

cpsc.gov. 86367 IN NS lars.ns.cloudflare.com.
CpscC.gov. 86367 IN NS abby.ns.cloudflare.com.
Cpsc.gov. 86367 IN RRSIG NS 13 2 86400 20160402121741 20160331101741 35273

cpsc.gov. QO3FN7XVRMTewKulGIbS1AglYnQrsbEfiwS65Mp+wT3D6n973Be9XzcR
nvel4fPLvQTcle/h5kpbXjut3nfhFQ==

CpscC.gov. 3505 IN DNSKEY 257 3 13
mdsswUyr3DPW132mOi8VIXESWES8jTo0dxCjjnopKI+GglxpVXckHAeF+
KkxLbxILfDLUTOrAK9iUzy1L53eKGQ==

CpscC.gov. 3505 IN DNSKEY 256 3 13
koPbw9wmYZ7ggcjnQ6ayHyhHaDNMYELKTqT+gRGrZpWSccr/IBcrm10Z
1PuQHB3Azhii+sbOPYFkH1ruxLhe5g==

CpsC.gov. 3505 IN RRSIG DNSKEY 13 2 3600 20160426183927 20160226183927 2371
cpsc.gov. 00c75Fa7KwogAAEpYIoWuTcsV1fPQ4sfuER+WOtxkOPbOFe8PdF2yBWa
3gRLA/N2pmdCVrAAelqdRONDfX6PCw==

Cpsc.gov. 47 IN TXT "v=spfl ip4:63.74.109.6 ip4:63.74.109.10 ip4:63.74.109.20 mx
a:list.cpsc.gov -all"
Cpsc.gov. 47 IN RRSIG TXT 13 2 300 20160402121801 20160331101801 35273

cpsc.gov. LXjZYeejRtkCFOVqqUpupc3Il/4s7Ypua/b/xE3wIC+7a4NRjM7+UA90s
gDdINQ8ZPF3SLcCqw2nfc3ex2II8Kg==

Cpsc.gov. 3324 IN NSEC \000.cpsc.gov. A NS SOA WKS HINFO MX TXT AAAA LOC SRV
CERT SSHFP IPSECKEY RRSIG NSEC DNSKEY TLSA HIP CDS CDNSKEY OPENPGPKEY SPF
Cpsc.gov. 3324 IN RRSIG NSEC 13 2 3600 20160402121810 20160331101810 35273

cpsc.gov. 3/11/SQrwvdffgawg6qG3zfetAlou5SQioVvOkzMmHbYWJooQv9QEEFX
LORwdWxlyOHly/Agq+UMWzcQ8D2UXZg==

That is 1,389 bytes and close to as optimized as you could manually create. The actual
response may be a bit larger because resolvers can add a 320-byte DS record. Even so, the



optimized CPSC zone would be about one third the size without compromising any
functionality and actually increasing security.

But we can do better than that. Unlike the CPSC's current DNS provider (Verizon/UU.net),
CloudFlare has anti-DNS reflection protections in place. Specifically, we automatically
upgrade from UDP to TCP when a DNS response is particularly large (generally, over 512
bytes). Since TCP requires a handshake, it prevents source IP address spoofing which is
necessary for a DNS amplification attack.

In addition, we rate limit unknown resolvers. Again, this helps ensure that our
infrastructure can't be abused to amplify attacks.

Finally, across our DNS infrastructure we have deprecated ANY queries and have proposed
to the IETF to restrict ANY queries to only authorized parties. By neutering ANY, we've
significantly reduced the maximum size of responses even for zone files that need to be
large due to a large number of records.

Denouement

DNSSEC is complicated and it's easy to get wrong. Unfortunately, getting your DNSSEC
configuration wrong creates a real potential harm to the rest of the Internet by making
your domain's zone file into a potential weapon to be abused by attackers. That's why, in
CloudFlare's implementation, we spent a significant amount of time to optimize our
automatic DNSSEC configuration to be as efficient as possible while still being easy and
free for all our customers.

As Clint Eastwood says in the final scene of the movie "The Good, the Bad, and the Ugly":
"You see in this world there's two kinds of people, my friend, those with loaded guns and
those who dig. You dig." Pardon the puns but... we hope the CPSC will fix their zone and
unload the giant gun attackers have used to launch some of the biggest DDoS attacks on
the Internet. When they do, it'll be a relief to "dig" their domain and get back a reasonably
sized answer.

If the instructions above aren't enough on their own, we'd be happy to work with the CPSC
to help them get their DNS record under control and ensure they are no longer
inadvertently facilitating the Internet's largest DDoS attacks. Of course, when the CPSC
does get its DNS issues fixed, undoubtedly attackers will find another misconfigured and
bloated zone they can abuse to launch DNS amplification DDoS attacks. And, when that
happens, we'll be happy to work with them too — until the whole Internet has the
well-configured DNS foundation it needs to be safe and secure.
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