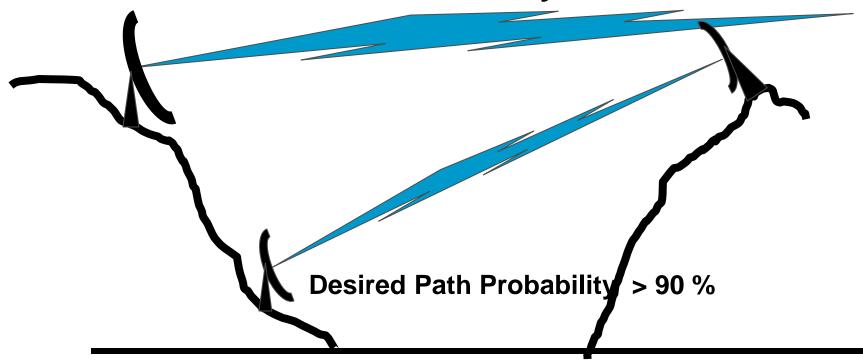
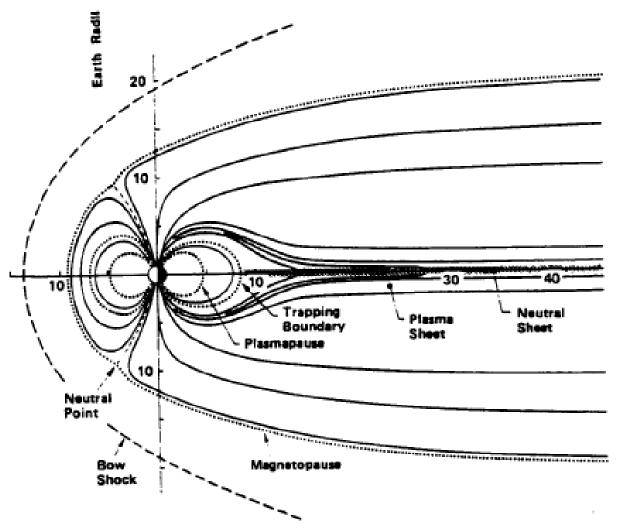


Radio Wave Propagation Federal Radio Frequency Spectrum Management Seminar


Mike Doolan NTIA/OSM/SEAD mdoolan@ntia.doc.gov 202-482-2320 December 2012

OVERVIEW

- Fundamentals
- Propagation Over Irregular Terrain
- MSAM Propagation Models
 - -ITM: Irregular Terrain Model
 - **–LMS: Land Mobile Services Model**
- ITS Models
- Relevant ITU-R Recommendations


Generalized Interference Prediction Process

Undesired Path Probability < 10%

Terms - Probability/Reliability/Percentages

Sun's Effect on Earth's Magnetic Field

Shuttle/Spacelab Contamination Environment and Effects Handbook

NASA Photos

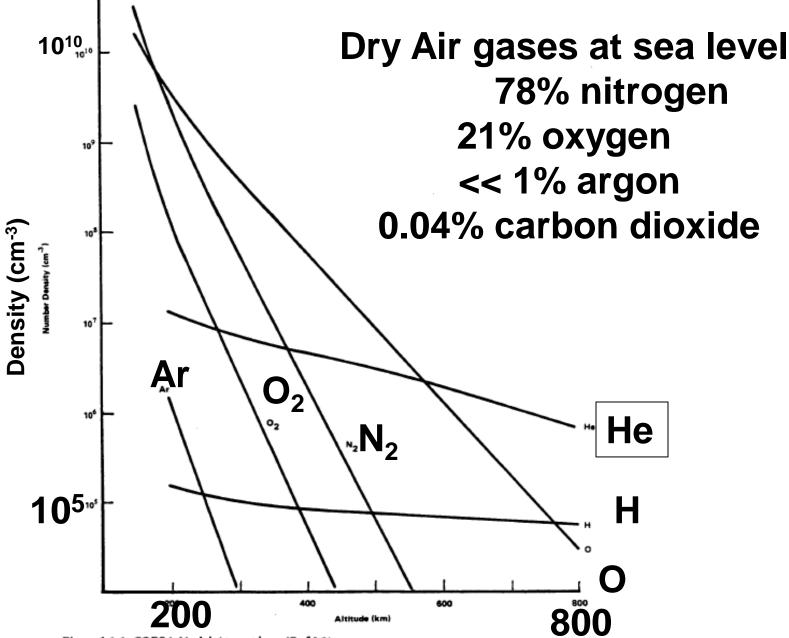
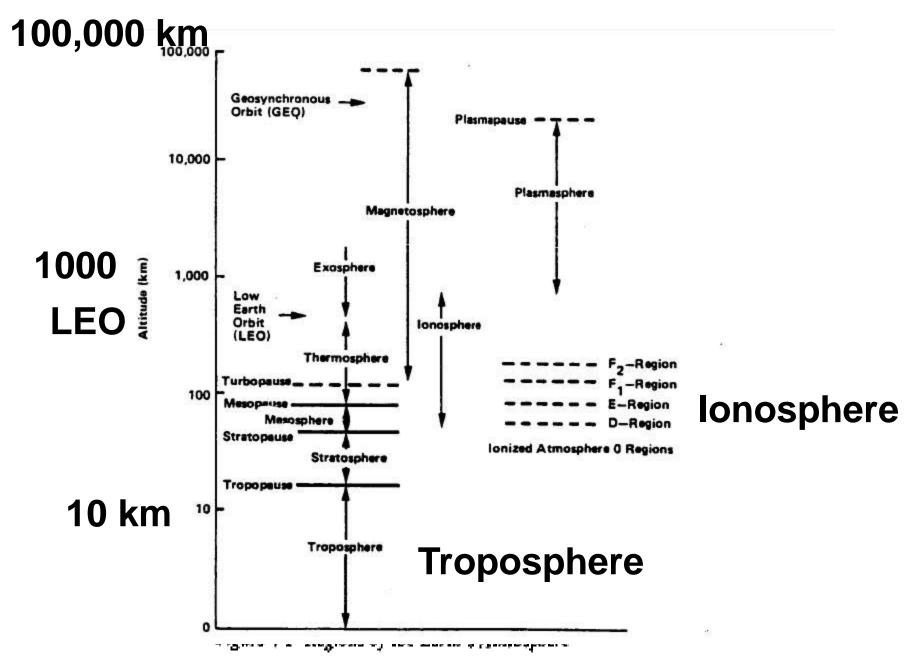



Figure 4.1-1 COESA Model Atmosphere (Ref I-2)

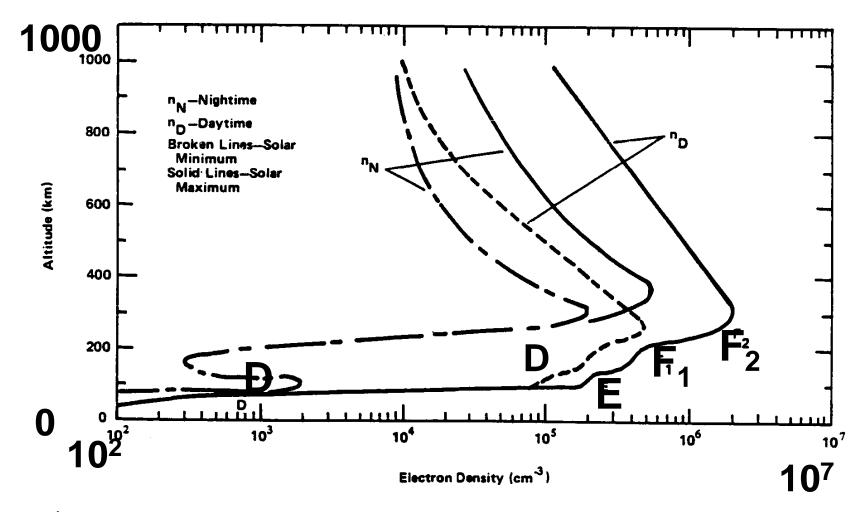
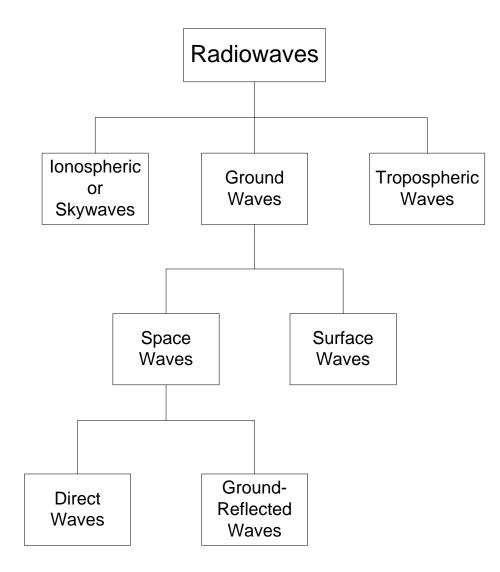
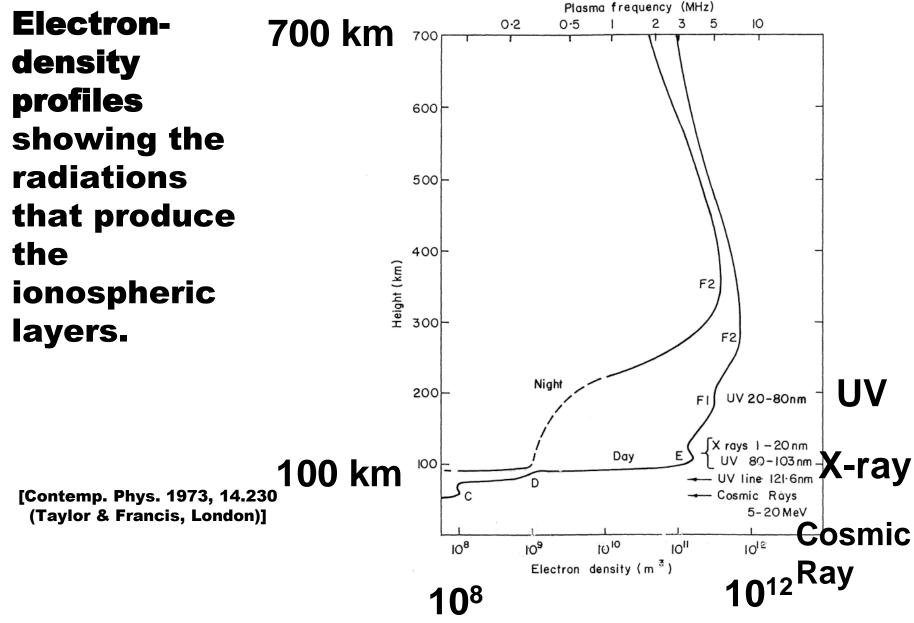
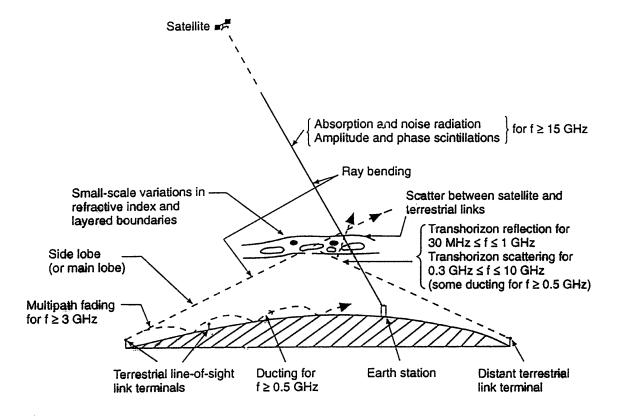



Figure 4.2-2 Ionospheric Electron Concentration

LARGE SCALE PROPAGATION EFFECTS

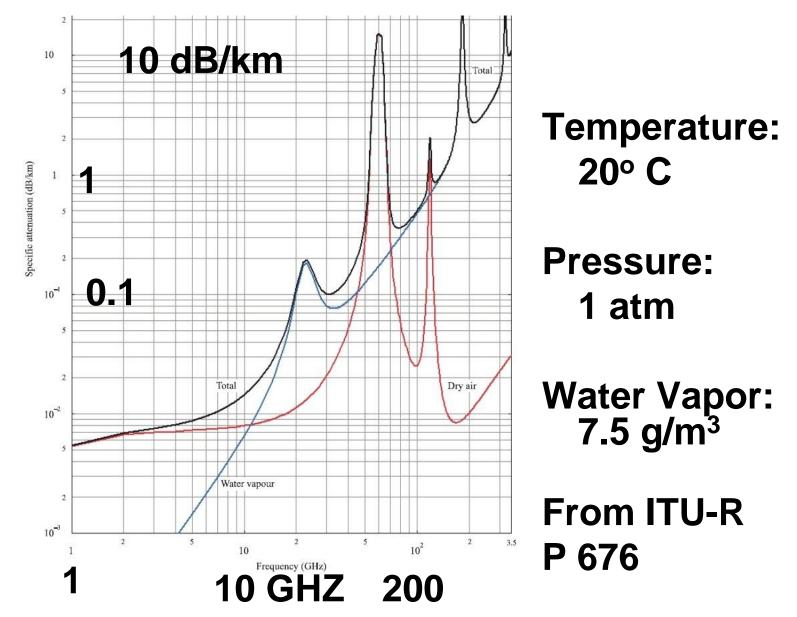
- Free Space Loss
- Diffraction
- Refraction
- Reflection
 - Scattering
 - Ducting


Modes of Radiowave Propagation

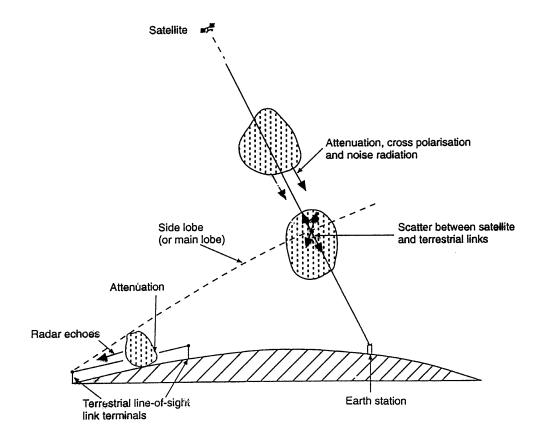

IONOSPHERIC SUMMARY

- Ionized Medium Reflects Signals in HF Spectrum
- Created By Solar Radiation (Daily, Seasonal and Solar Cycle Variations)
- Five Principle Regions (D, E, E_s, F1, F2)

Propagation of radiowaves



Effects of Atmospheric Gasses Refractive-Index Changes



Ref. Propagation of Radiowaves, Edited by Les Barclay

Atmospheric Gas and Water Vapor Attenuation

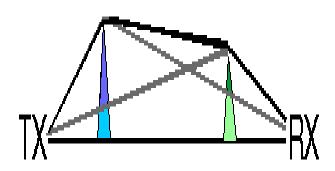
Effects of Cloud and Precipitation (Above several GHz)

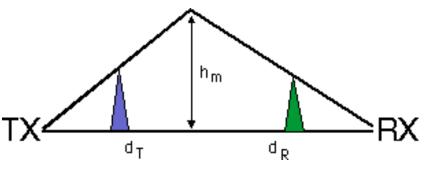
Ref. Propagation of Radiowaves, Edited by Les Barclay.

PROPAGATION ASPECTS AND SERVICES IN DIFFERENT FREQUENCY BANDS

Frequency Band	Atmospheric Influence	Terrestrial Influence	Applications	Comments
ELF < 3 kHz	Waveguide and cavity propagation with ionosphere as upper boundary	Earth forms lower boundary of waveguide, waves propagate deep into earth or sea	Long-range comm with submarines	Very Large Antennas, very Iow data rate
VLF 3 – 30 kHz	Waveguide propagation with D-region as upper boundary	Earth forms lower boundary	Worldwide telegraphic services with ships	Very Large Antennas, Iow data rate
LF 30 – 300 kHz	Waves below D region up to 100 kHz, sky waves distinct from ground waves above 100 kHz	Ground waves follow earth	Long-range communication with ships	Large antennas, difficult to make it directional
MF 300 - 3000 kHz	Sky waves for longer distances and higher frequencies	Surface waves for shorter distances and lower frequencies, ground reflections	Broadcasting, navigational aids	Large antennas, service area about 100 km during day, longer distances at night

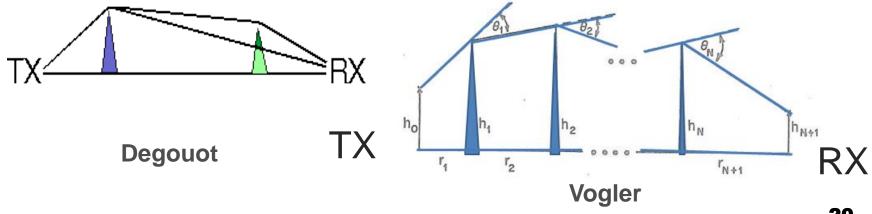
Frequency Band	Atmospheric Influence	Terrestrial Influence	Applications	Comments
HF 3 - 30 MHz	lonospheric beyond skip distance (6-30 MHz)	Surface waves only at short distance (3-6 MHz), reflection, scatter	long distance broad- casting	Curtain arrays, vertical whips, log periodic arrays
VHF 30 - 300 MHz	Tropospheric waves sporadic E cause interference	Terrestrial LOS and BLOS with diffraction, multipath effects due to reflection	Broadcasting, land, aero and maritime mobile, cordless phones, radionavigation	Yagi, slots and helixes used, broadband, surface waves attenuated
UHF 300 - 3000 MHz	Refraction, reflection at lower and ducting at higher frequencies, troposcatter above about 500 MHz	Terrestrial and earth-space LOS and slightly BLOS, screening by hills and buildings	TV broad- cast, radars,	Both wideband and high gain antennas used, more severe screening effects
SHF 3-30 GHz	Refraction and ducting, attenuation due to rain etc., scintillation	Terrestrial and earth-space LOS, diffraction and screening due to buildings, scatter and reflection from buildings, terrain, trees and sea	Fixed terrestrial and satellite services, mobile	High gain parabolic dishes and horns, ducting may cause interference, multipath cause fading, absorption by rain, snow, fog, cloud and gasses


PROPAGATION ASPECTS IN DIFFERENT BANDS

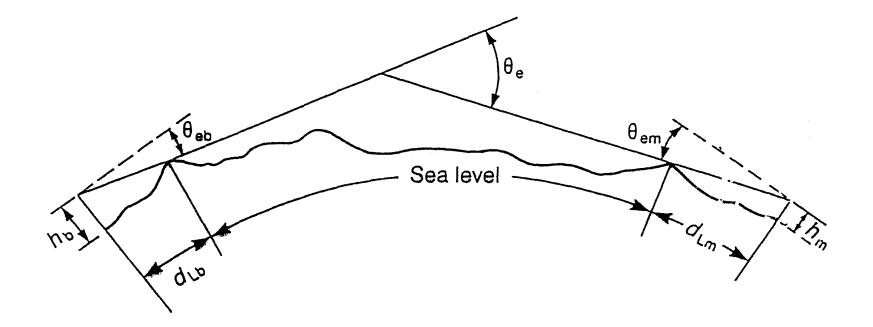

Frequency Band	Atmospheric Influence	Terrestrial Influence	Applications	Comments
MILLIMETRIC EHF 30 – 300 GHz	Refractive index gradient, rain etc. cause attenuation and scatter, absorption by water vapor and oxygen, scintillation	Terrestrial short distance LOS, screening by buildings and foliage	Short-range fixed and mobile communication systems	Small parabolic dishes, technology under development for LMDS, LMCS, WLAN and indoor communications
SUB- MILLIMETR IC 300 – 3000 GHz	Localized refractive index gradient, rain etc. cause severe attenuation, absorption by gases, scintillation	Very short range LOS, screening by trees	Short-range communications, remote sensing	Mirror or lens antennas, equipment lacking
INFRARED AND OPTICAL 3 - 430 THz and 430 - 860 THz	Localized refractive index gradient, rain etc. cause very severe attenuation, absorption by gasses, scintillation	LOS, screening by small objects	Short-range and indoor for far- infrared, alarms, smoke detectors, remote control and spectrometry for near-infrared, optical LOS links	Mirrors and lenses for antennas, little communication use at far-infrared, no potential seen at near-infrared, optical short LOS

PROPAGATION OVER IRREGULAR TERRAIN

- Single Knife Edge Diffraction
- Diffraction Over Rounded
 Obstacles
- Multiple Knife Edge
 Diffraction (also smooth Earth)
 - Vogler's Method
 - Bullington's Method
 - Epstein-Peterson's Method
 - Deygout Method


Various Knife Edge Constructions

Epstein Peterson


Bullington

Primary Path Loss Prediction Models

- Longley-Rice Model (MSAM)
- TIREM
- CRC-Predict
- Walfish-Bertoni Model
- Walfish-Ikegami Model
- Models Based on Okumura's Data
- IF-77

THE MOBILE RADIO PROPAGATION CHANNEL

Geometry of a Trans-horizon Radio Path

INPUT PARAMETERS FOR THE ITS MODEL WITH THE DESIGN LIMITS

System Parameters

Frequency Distance Antenna Heights 20 MHz to 20 GHz 1 km to 2000 km 0.5 m to 3000 m

250 to 400 N-units

one of seven

<u>Environmental Parameters</u> Terrain Irregularity Parameter, Delta h Electrical Ground Constants Surface Refractivity Climate

<u>Deployment Parameters</u> Siting Criteria careful

random, careful, or very

<u>Statistical Parameters</u> Reliability and Confidence Level <u>(*see slide 3)</u>

*0.1 % to 99.9 %

Suggested Values for the Terrain Irregularity Parameter

	Dh (meters)
Flat (or smooth water)	0
Plains	30
Hills	90
Mountains	200
Rugged Mountains	500
For an average terrain, use	Δh = 90 m

Suggested Values for Electrical Ground Constants

	Relative Permittivity	Conductivity (Siemens per Meter)
Average Ground	15	0.005
Poor Ground	4	0.001
Good Ground	25	0.020
Fresh Water	81	0.010
Sea Water	81	5.0
For most purposes, use the constants for an average ground		

Radio Climate and Suggested Values for N_s

	N _s (N-Units)
Equatorial (Congo)	360
Continental Subtropical (Sudan)	320
Maritime Subtropical (West Coast of Africa)	370
Desert (Sahara)	280
Continental Temperate	301
Maritime Temperate, Over Land (United Kingdom and Continental West Coasts)	320
Maritime Temperate, Over Sea	350
For average atmospheric condition Continental Temperate climate and N _s	•

Popular Land Mobile Services Models

- Original Okumura-Hata Model
- COST 231 Extension
- ITU Extension
- Okumura-Hata-Davidson
- MSAM LMS package

Okumura Curves

Mean Loss

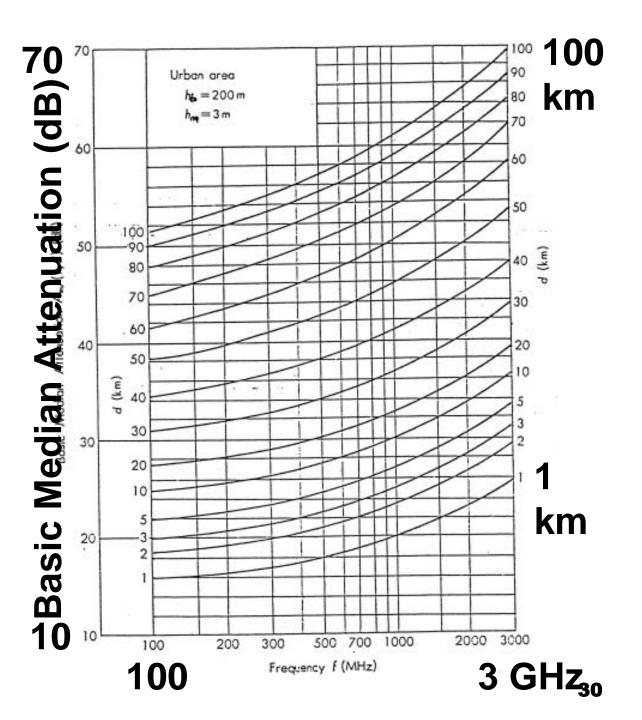
Frequency 150 – 1.9 GHz

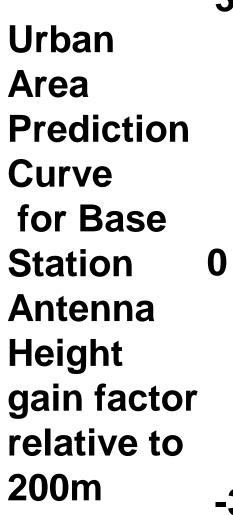
(Extrapolated to 3 GHz)

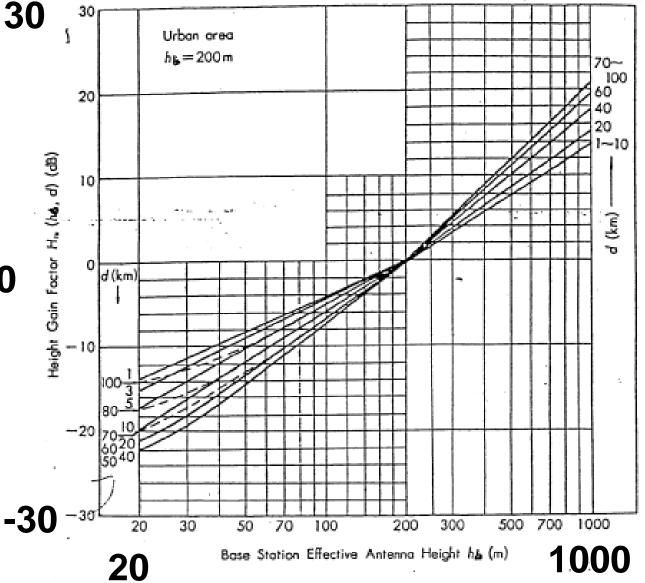
- h₁: Base Height meters 30 m to 1k m
- h₂: Mobile Height meters, 1 to 10 m
- d: Distance 1 to 100 km
- A_{mu}(f,d): Median Attenuation Rel to FSL

 $L_{50}(dB): L_{f} + A_{mu}(f,d) - G(h_{1}) - G(h_{2}) - G_{area}$

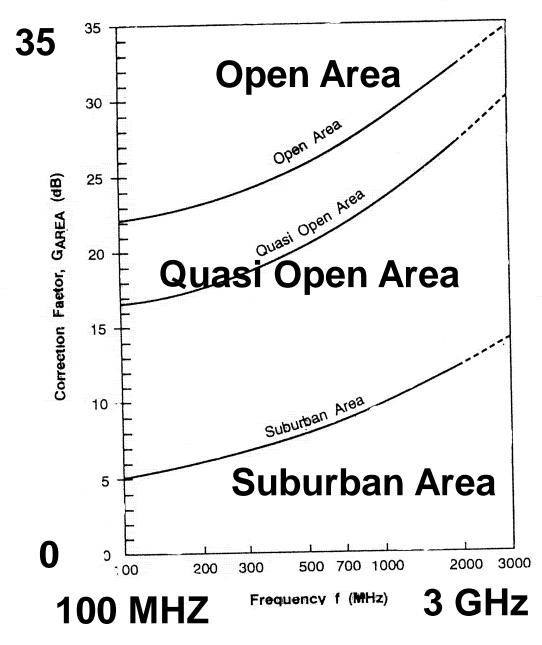
Antenna Height Gain Factors

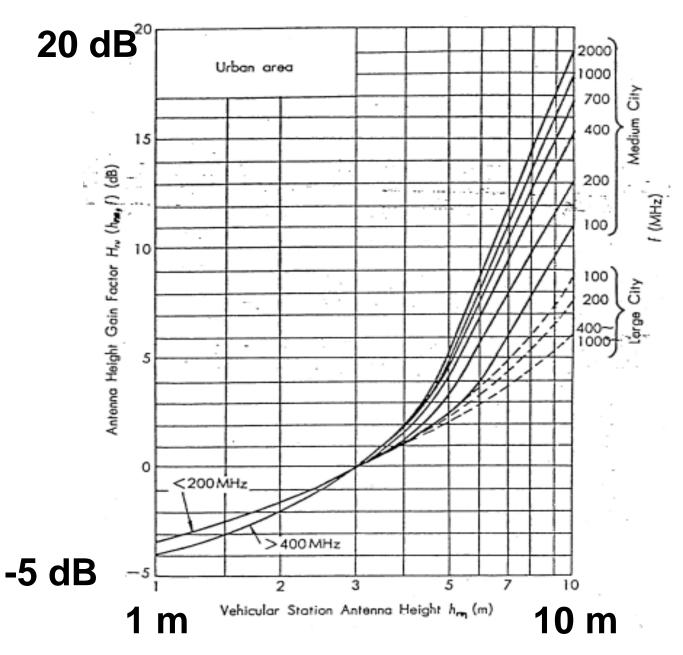

$G(h_1) = 20 \log (h_1/200), 1k m > h_1 > 10 m$


$\begin{array}{l} G(h_2) = 10 \, \log \, (h_2/3), \, h_2 < 3 \, m; \\ = 20 \, \log (h_2/3), \, 10 > h_2 > 3 \, m \end{array} \end{array}$


G_{Area}: Gain due to type of environment

\boldsymbol{A}_{mu} and \boldsymbol{G}_{Area} Curves are given.


Urban Area Prediction for Median **Attenuation** relative to **FSL** over quasi-smooth terrain **Base** = 200 m, mobile = 3 m



Area Correction Factor G_{AREA} (dB)

Urban Area Prediction Curve for Vehicular Antenna Height

The Hata Model

Standard formula for median path loss in urban areas is given by L_{50} (urban) = 69.55 + 26.16 log₁₀ f - 13.82 log₁₀ h₁ - a(h₂) + (44.9 - 6.55 log₁₀ h₁) log₁₀ d

For a small to medium sized city, the correction factor is given by $a(h_2) = (1.1 \log_{10} f-0.7) h_2 - (1.56 \log_{10} f-0.8) dB$

and for	a large city, is give by	
a(h ₂)	= 8.29(log ₁₀ 1.54h ₂)² – 1.1 db	for f <= 200 MHz
	=3.2(log ₁₀ 11.75h ₂) ² – 4.97 dB	for f >= 400 MHz

To obtain the path loss in decibels in a suburban are the formula is modified as

 $L_{50} = L_{50}(urban) - 2 [log_{10}(f/28)]^2 - 5.4$

And for the path loss in decibels in open areas the formula is modified as $L_{50} = L_{50}(urban) - 4.78 (log_{10}f)^2 + 18.33 (log_{10}f) - 40.98$

Modified Cost 231

(European Cooperative for Scientific and Technical Research)

 $\begin{array}{l} \textit{Mean Loss} \\ \textbf{P}_t: \ \textit{transmitter power in watts} \\ \textbf{f: } 1.5 - 2.0 \ \textit{GHz} \\ \textbf{h}_1: \ \textbf{30 to 200 m} \\ \textbf{h}_2: \ \textbf{1 to 10 m} \\ \textbf{d: 1 to 100 Km} \\ \textbf{L}_{50}(\textbf{dB}) = 46.33 + 33.9 \ \textit{log}_{10} \ \textbf{f} - 13.82 \ \textit{log}_{10} \ \textbf{h}_1 - \textbf{a}(\textbf{h}_2) + (44.9 - 6.55 \ \textit{log}_{10} \ \textbf{h}_1) \\ & (\textit{log}_{10} \ \textbf{d})^{b} + \textbf{C}_m \end{array}$

Where C_m = 0 dB, for small/medium cities = 3 dB, for large cities

Field Strength E in dB(dB mV/m) = 63.1 + 10 $\log_{10} P_t - 13.9 \log_{10} f + 13.82 \log_{10} h_1 + a(h_2) - (44.9 - 6.55 \log_{10} h_1)(\log_{10} d)^b - C_m$ b as defined earlier

Okumura-Hata Model (ITU 1546)

```
Field Strength
E in dB(dB \muV/m) = 39.82 + 10 log<sub>10</sub> P<sub>t</sub> - 6.16 log<sub>10</sub> f + 13.82 log<sub>10</sub> h<sub>1</sub>+ a(h<sub>2</sub>)
                             - (44.9 - 6.55 log<sub>10</sub> h<sub>1</sub>)(log<sub>10</sub> d)
P<sub>t</sub>: transmitter power in watts
f: 150 – 1500 MHz
h₁: 30 to 200 m
h<sub>2</sub>: 1 to 10 m
d: 1 to 100 km
a(h_2) = (1.1 \log f - 0.7) h_2 - (1.56 \log f - 0.8)
For d<= 20 Km
b=1
For d> 20 km
b = 1 + (0.14) + 1.87 \times 10^{-4} \times f + 1.07 \times 10^{-3} h_1 (log(d/20))<sup>0.8</sup>
Mean Loss
```

 $\begin{array}{l} \mathsf{L}_{50}(\mathsf{dB}) = 69.55 + 26.16 \log_{10} \mathsf{f} - 13.82 \log_{10} \mathsf{h}_1 - \mathsf{a}(\mathsf{h}_2) + (44.9 - 6.55 \log_{10} \mathsf{h}_1) \ (\log_{10} \mathsf{d})^{\mathsf{b}} \end{array}$

Okumura-Hata/Davidson Model

```
f : 30 - 1500 MHz
h<sub>1</sub> : 20 - 2500 m
h<sub>2</sub> : 1 - 10 m
d : 1 - 300 km
```

```
Add and/or subtract the following terms:

A(h_1,d) = 0.62137 (d - 20) [0.5 + 0.15 \log_{10} (h_1 / 121.92)], d > 20 km

S_1(d) = 0.174 (d - 64.38), d > 64.38 km

S_2(h_1,d) = 0.00784 | \log_{10} (9.98/d) | (h_1 - 300), h_1 > 300 m

S_3(f) = f/250 \log_{10} (1500/f)

S_4(f,d) = 0.112 \log_{10} (1500/f) (d - 40.238), d > 40.238
```

Okumura-Hata/Davidson median path loss $L_{50}(O-H/D) = L_{50}(O-H) + A(h_1, d) - S_1(d) - S_2(h_1, d) - S_3(f) - S_4(f,d)$

Field Strength E = $109.36 + 10 \log_{10} P_t + 20 \log_{10} f - L_{50}(O-H/D)$

ITS MODELS

- ITM (Irregular Terrain Model) Based on Longley-Rice
 - Point-To-Point Mode
 - Point-To-Area Mode
- IF-77 (Johnson-Gierhart) For Aeronautical Mobile Applications used in ITU-R P.528
- FAA updated this program in 2010
- ITS HF Propagation Analysis Package
 - VOACAP, VOAAREA and S/I VOACAP Gives Point-To-Point, Area Coverage Signal-To-Interference Ratio for VOA
 - REC533 Point-To-Point Prediction of HF Broadcast, ITU-R P.533-5
 - RECAREA: Area Coverage of HF Broadcast
 - ICEPAC, ICEAREA and S/I ICEPAC: Ionospheric Communications enhanced Profile Analysis and Circuit Prediction Program

Irregular Terrain Model Dimensions of Variability

- On fixed paths hourly median signal levels have been measured and record for periods of years and median signal levels and standard deviations determined. Results in <u>time variability</u>. Looking at the data one might be able to say for 95% of the time the attenuation did not exceed 36 dB.
- Looking at a second similar path with all parameters constant, we would find the statistics are different and the long term statistics have changed. We find that there is a path-to-path variability. We call this <u>location variability</u>. Now we would perhaps say there will be 70% of locations the attenuation does not exceed 36 dB for at least 95% of the time.
- If we rerun the experiments in different but like appearing situations we again observe changes in the statistics. These are referred to as <u>situational variability</u>. Now we would say in 90% of like situations, there will be at least 70% of locations the attenuation does not exceed 36 dB for at least 95% of the time.
- Prediction of Tropospheric Radio Transmission Loss over Irregular Terrain Longley & Rice Ref ESSA TR ERL 79-ITS 67
- **Use of the ITS ITM in the Area Prediction Mode NTIA 82-100**

ITU-R RECOMMENDATIONS

- ITU-R P. 1144 Guide to the Application of the Propagation Methods of Radiocommunication Study Group 3
- ITU-R P. 452 Prediction Procedure for the Evaluation of Microwave Interference Between Stations on the Surface of the Earth at Frequencies Above About 0.7 GHZ
- ITU-R P. 530 Propagation Data and Prediction Methods Required for the Design of Terrestrial Line-of-Sight Systems
- ITU-R P. 533 HF Propagation Prediction Method
- ITU-R P. 1411-3: Propagation Data and Prediction Methods for the Planning of Short-Range Outdoor Radiocommunication System s and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz
- ITU-R P. 1546-2: Method for Point-to-Area Predictions for Terrestrial Services in the Frequency Range 30 to 3000 MHz.
- ITU-R P.1812 A path-specific propagation prediction method for point-to-area terrestrial services in the VHF and UHF bands
- ITU-R P. 526 Propagation by Diffraction
- ITU-R P. 676 Attenuation by atmospheric gases
- ITU-R P.840 Attenuation due to clouds and fog

NTIA http://www.ntia.doc.gov/osmhome/osmhome.html NTIA Publications http://www.ntia.doc.gov/osmhome/reports.html Institute for Telecommunication Sciences (ITS) http://www.its.bldrdoc.gov/ ITS Publications http://www.its.bldrdoc.gov/pub/pubs.php http://www.voacap.com/index.html - by Jari Perkiomaki (Finland). www.voacap.com - a website for VOACAP maintained by Jari. http://www.swpc.noaa.gov/ for real-time monitoring/forecasting of solar & geophysical events. http://www.pgdc.noaa.gov/ from the National Coophysical Data Contor

http://www.ngdc.noaa.gov/ from the National Geophysical Data Center. http://www.ngdc.noaa.gov/stp/iono/if2ig.html information.

The FCC www.hfcc.org/In formally coordinates short wave broadcasting. www.bbg.gov/

www.**arrl**.org/

Nat Institute of Standards and Tech (NIST) Propagation http://w3.antd.nist.gov/wctg/manet/wirelesspropagation_bibliog.html High Frequency (HF) (2-30 MHz) http://www.its.bldrdoc.gov/elbert/hf.html Irregular Terrain Model (ITM) (Longley-Rice) (20 MHz - 20 GHz) http://flattop.its.bldrdoc.gov/itm.html IF-77 Wave Propagation Model http://flattop.its.bldrdoc.gov/if77.html

"Globe" Terrain Routines http://www.its.bldrdoc.gov/elbert/globe.html