
1 
 

Dear NTIA colleagues, 

BSI would like to thank you for the opportunity provided to the community to provide comments for 
this important topic. Please find our comments below. 

1. Are the elements described above, including data fields, operational considerations, and support 
for automation, sufficient? What other elements should be considered and why? 

As a starting point, the suggested data fields seem to be sufficient. However, we suggest considering 
the benefit of linking SBOMs as described in comment regards 3a. 

Concerning the support for automation, it is important to not only suggest formats for SBOM (as e.g. 
SPDX) but also provide suggestions for distribution. If the distribution question is not tackled and no 
guidance is given, we will soon have all sorts of different ways for distributing SBOMs. This is the 
current situation for security advisories and we see that this is a massive obstacle against 
automation. Therefore, we suggest specifying three ways of distributing SBOMs: 

• Online via API (e.g. with a configurable) 
• Online as file based approach / repository 
• Offline from the device in question 

All these three way must use common open source standards. 

3. a. Software Identity: There is no single namespace to easily identify and name every software 
component. The challenge is not the lack of standards, but multiple standards and practices in 
different communities. 

The name must be unique per organization. The organization then provides the namespace for the 
software identity. Links between versions of SBOM should be possible so that a new SBOM links to its 
predecessor. It is to be considered whether it is possible to also link old SBOMs to their successors. 
This will allow consumers to keep track of product versions through SBOMs. It could also solve a part 
of the naming problems which come with mergers, sell-offs and acquisition. As products might be 
renamed or available under a different namespace these links will help to always find the correct 
SBOM. Obviously, this works only for the online (or an out-of-band) distribution as SBOMs need to be 
updated once a new version is available. 

3 c. Legacy and binary-only software: Older software often has greater risks, especially if it is not 
maintained. In some cases, the source may not even be obtainable, with only the object code 
available for SBOM generation. 

Wherever possible SBOM should be generated from source and during the build process. If only the 
object code was available for SBOM generation, this should be clearly stated in the SBOM. It also 
should add a flag that unknown components might be in the product. This is important as code might 
have been copied, or being inserted in a way not identifiable during the SBOM generation process. 

3 d. Integrity and authenticity: An SBOM consumer may be concerned about verifying the source 
of the SBOM data and confirming that it was not tampered with. Some existing measures for 
integrity and authenticity of both software and metadata can be leveraged. 

As the integrity and authenticity is important, SBOM should be secured with existing measures. It 
must be ensured that namespace injection and signature wrapping attacks are impossible. To reach 
this goal, the complete file should be secured. 



2 
 

3 g. Delivery. As noted above, multiple mechanisms exist to aid in SBOM discovery, as well as to 
enable access to SBOMs. Further mechanisms and standards may be needed, yet too many 
options may impose higher costs on either SBOM producers or consumers. 

As commented with regard to question 1: There should be only three ways of distributing SBOMs. 
Each of them should use at max two existing standards to fulfill the goal. A supplier must support 
at least one of them. Concerning the “./well-known/sbom” directory we suggest looking into 
ROLIE (cf. RFC 8322) as a standard. 

3 h. Depth. As noted above, while ideal SBOMs have the complete graph of the assembled 
software, not every software producer will be able or ready to share the entire graph. 

An enforced depth of 1 – listing all components of the assembled software – seems to be a good 
starting point. This will enable people to start generating SBOMs fast for their products without 
having too much trouble finding the dependencies for their suppliers. Although it is desirable to have 
deeper insights, we think that this is currently not possible for most of the producers. Therefore, 
such a requirement will likely hinder the adoption of SBOMs. Nevertheless, we recommend pushing 
the suppliers to a depth of 2 as this ensures that the supplier is aware of which components he 
added into his product. 

3 i. Vulnerabilities. Many of the use cases around SBOMs focus on known vulnerabilities. Some 
build on this by including vulnerability data in the SBOM itself. Others note that the existence and 
status of vulnerabilities can change over time, and there is no general guarantee or signal about 
whether the SBOM data is up-to-date relative to all relevant and applicable vulnerability data 
sources. 

As data about vulnerabilities is changing over time, BSI strongly advises against including this in any 
SBOM. There are well-established formats to convey such information. Adding this information to 
SBOMs would also contradict the proposed generation frequency (“Bundled with every product 
version and archived by the supplier”) as the SBOM would have to be updated whenever new 
vulnerability information becomes available. Moreover, it also contradicts the initial purpose of 
SBOMs to deliver a “list of ingredients” and therefore the Principle of Least Surprise (POLS). 
Furthermore, it would make the SBOM standard more complex and violate the DOTADIW (Do One 
Thing And Do It Well) principle. Including vulnerability data would also lead to a state where SBOM 
becomes a competing standard to the well-established formats. This altogether makes including 
vulnerability data to a substantial risk to the adoption of SBOM. 

3 j. Risk Management. Not all vulnerabilities in software code put operators or users at real risk 
from software built using those vulnerable components, as the risk could be mitigated elsewhere 
or deemed to be negligible. One approach to managing this might be to communicate that 
software is “not affected” by a specific vulnerability through a Vulnerability Exploitability 
eXchange (or “VEX”), but other solutions may exist. 

Risk can only be assessed if sufficient information is provided. As the VEX format conveys information 
which can be seen as “negative security advisory” it should make use of the Common Security 
Advisory Framework - a standard developed by the CSAF TC at OASIS Open. This will leverage 
synergies as many companies already have a process to deal with security advisories. Information 
they provide is used to make a risk based decision with regard to vulnerabilities. 


