
Comments on 86 FR 29568: SBOM Elements and Considerations

We respectfully request your consideration of Garmin International, Inc.’s comments in response to
NTIA’s Request for Comments within Notice 86 FR 29568 [1].

Below, we provide a direct hyperlink to relevant paragraphs under the Request for Comments within the
Notice [1], followed by our corresponding comment. Additional citations within our comments are
numbered in order of appearance, within square brackets (consistent with IEEE citations in technical
writing).

3.d. Integrity and authenticity https://www.federalregister.gov/d/2021-11592/p-48

We advocate for making integrity hashes a recommended rather than required element of the SBOM.
The hash does not add value in cases where the recipient does not have the corresponding source files,
which is likely to be common for proprietary components. It also does not add value for use within an
organization when a version control system such as git is used to identify the revision of the component
used. We also recommend that careful attention be given to precisely specify the method to generate
any integrity hash, especially in cases where the component consists of multiple files. Cryptographic
hash algorithms will generate different hashes when input ordering changes. This fact complicates
automated SBOM generation by any build system where compilation ordering is not completely
deterministic. See also our comment below on 3.e. about limitations on trust.

3.e. Threat model

The questions posed under 3.e. are more generally about establishing trust in “any code you didn’t write
yourself” [2]. Establishing trust and confidence in a target software assembly (and/or the tooling used to
build it) is orthogonal the primary SBOM concern of identifying the so-called “ingredients list” in said
software.

Apart from the question about minimal supporting contents in the SBOM, require the build system to
have its own SBOM as practicable. Build-time code generation from interface files as well as the output
of compilers and assemblers are existing recognized hurdles concerning feasible depth vs. limits to
establishing trust.

Apart from the minimum SBOM specification, separately work to make build systems immutable as
feasible. Feasibility is likely to vary greatly by method of deployment: IoT device, desktop application,
cloud SaaS, etc. As noted by [3], “Software security risks are posed by vulnerabilities rather than by
method of deployment”.

Keep concerns separated and focus on simplicity of the SBOM itself as the so called “ingredients list” for
a target software deliverable. Keeping concerns separated will better facilitate SBOM reuse as a building
block across new contexts and methods of deployment.

• SBOM for component A may serve as a dependency in a higher-level software assembly (with
own SBOM B)

• Modern methods of deployment in distributed applications blur the lines between the target
deliverable, its runtime configuration, and its build system.

https://www.federalregister.gov/d/2021-11592/p-48
https://www.federalregister.gov/documents/2021/06/02/2021-11592/software-bill-of-materials-elements-and-considerations#p-49

• Overspecification would hinder SBOM usability for its primary use cases, across all methods of
deployment.

3.i. Vulnerabilities

To facilitate meaningful reporting of known, unmitigated vulnerabilities within individual

components

• The SBOM should identify all vulnerabilities that have been patched

• Consider allowing vulnerability dismissal by providing date of analysis

Vulnerability dismissal is a stop-gap for VEX [3] -- a longer-term effort. Near-term, dismissal should

be allowed if analysis can provide assurance (better yet, evidence) that a known vulnerability within

an individual component is not exploitable within a higher-level assembly. Dismissal would minimally

require date of analysis.

[1] Software Bill of Materials Elements and Considerations. 86 Fed. Reg. 29568, 29571 (NTIA Notice and
Request for Comment, June 2, 2001). [Online]. Available:
https://www.federalregister.gov/documents/2021/06/02/2021-11592/software-bill-of-materials-
elements-and-considerations [Accessed: June 9, 2021].

[2] Thompson, Ken. "Reflections on trusting trust." ACM Turing award lectures. 2007. 1983.
https://dl.acm.org/doi/pdf/10.1145/1283920.1283940 [Accessed: June 9, 2021].

[3] J. Spring, "CERT/CC Comments on Standards and Guidelines to Enhance Software Supply Chain
Security," Carnegie Mellon University's Software Engineering Institute Blog, June 1, 2021. [Online].
Available: http://insights.sei.cmu.edu/blog/certcc-comments-on-standards-and-guidelines-to-enhance-
software-supply-chain-security/ [Accessed: June 9, 2021].

[4] “VEX”, DRAFT - Requirements for Sharing of Vulnerability Status Information. NTIA, October 10,
2020. [Online]. Available:
https://www.ntia.doc.gov/files/ntia/publications/draft_requirements_for_sharing_of_vulnerability_stat
us_information_-_vex.pdf [Accessed: June 9, 2021].

https://www.federalregister.gov/documents/2021/06/02/2021-11592/software-bill-of-materials-elements-and-considerations#p-54
https://www.federalregister.gov/documents/2021/06/02/2021-11592/software-bill-of-materials-elements-and-considerations
https://www.federalregister.gov/documents/2021/06/02/2021-11592/software-bill-of-materials-elements-and-considerations
https://dl.acm.org/doi/pdf/10.1145/1283920.1283940
http://insights.sei.cmu.edu/blog/certcc-comments-on-standards-and-guidelines-to-enhance-software-supply-chain-security/
http://insights.sei.cmu.edu/blog/certcc-comments-on-standards-and-guidelines-to-enhance-software-supply-chain-security/
https://www.ntia.doc.gov/files/ntia/publications/draft_requirements_for_sharing_of_vulnerability_status_information_-_vex.pdf
https://www.ntia.doc.gov/files/ntia/publications/draft_requirements_for_sharing_of_vulnerability_status_information_-_vex.pdf

