
1

Potential	Elements	for	an	SBOM	

NTIA	proposes	a	definition	of	the	‘‘minimum	elements’’	of	an	SBOM	that	builds	on	three	broad,	inter-related	areas:	
Data	fields,	Operational	considerations,	and	Support	for	automation.	Focusing	on	these	three	elements	will	enable	an	
evolving	approach	to	software	transparency,	and	serve	to	ensure	that	subsequent	efforts	will	incorporate	more	detail	
or	technical	advances.	The	information	below	is	preliminary,	and	the	ultimate	list	published	by	NTIA	will	be	revised	
based	on	public	input.	

Data	fields.	To	understand	the	third-	party	components	that	make	up	software,	certain	data	about	each	of	those	
components	should	be	tracked.	This	‘‘baseline	component	information’’	includes:

� Supplier	name
� Component	name
� Version	of	the	component
� Cryptograph	hash	of	the	component	
� Any	other	unique	identifier
� Dependency	relationship
� Author	of	the	SBOM	data		

Operational	considerations.	SBOM	is	more	than	a	set	of	data	fields.	Elements	of	SBOM	include	a	set	of	operational	and	
business	decisions	and	actions	that	establish	the	practice	of	requesting,	generating,	sharing,	and	consuming	SBOMs.	
This	includes:	

� Frequency.	Operational	considerations	touch	on	when	and	where	the	SBOM	data	is	generated	and	tracked.	SBOM	
data	could	be	created	and	stored	in	the	repository	of	the	source.	For	built	software,	it	can	be	tracked	and	assembled	
at	the	time	of	build.	A	new	build	or	an	update	to	the	underlying	source	should,	in	turn,	create	a	new	SBOM.	

� Depth.	The	ideal	SBOM	should	track	dependencies,	dependencies	of	those	dependencies,	and	so	on	down	to	the	
complete	graph	of	the	assembled	software.	Complete	depth	may	not	always	be	feasible,	especially	as	SBOM	practices	
are	still	novel	in	some	communities.	When	an	SBOM	cannot	convey	the	full	set	of	transitive	dependencies,	it	should	
explicitly	acknowledge	the	‘‘known	unknowns,’’	so	that	the	SBOM	consumer	can	easily	determine	the	difference	
between	a	component	with	no	further	dependencies	and	a	component	with	unknown	or	partial	dependencies.	

� Delivery.	SBOMs	should	be	available	in	a	timely	fashion	to	those	who	need	them	and	have	proper	access	
permissions	and	roles	in	place.	Sharing	SBOM	data	down	the	supply	chain	can	be	thought	of	as	comprising	two	parts:	
How	the	existence	and	availability	of	the	SBOM	is	made	known	(advertisement	or	discovery)	and	how	the	SBOM	is	
retrieved	by	or	transmitted	to	those	who	have	the	appropriate	permissions	(access).8	Similar	to	other	areas	of	
software	assurance,	there	will	not	be	a	one-size-fits-all	approach.	Anyone	offering	SBOMs	must	have	some	
mechanism	to	deliver	them,	but	this	can	ride	on	existing	mechanisms.	SBOM	delivery	can	reflect	the	nature	of	the	
software	as	well:	Executables	that	live	on	endpoints	can	store	the	SBOM	data	on	disk	with	the	compiled	code,	
whereas	embedded	systems	or	online	services	can	have	pointers	to	SBOM	data	stored	online.

Automation	support.	A	key	element	for	SBOM	to	scale	across	the	software	ecosystem,	particularly	across	
organizational	boundaries,	is	support	for	automation,	including	automatic	generation	and	machine-readability.	As	the	
Executive	Order	notes,	SBOMs	should	be	machine-readable	and	should	allow	‘‘for	greater	benefits	through	
automation	and	tool	integration.’’	Manual	entry	or	distribution	with	spreadsheets	does	not	scale,	especially	across	
organizations.

The	SBOM	community	has	identified	three	existing	data	standards	(formats)	that	can	convey	the	data	fields	and	be	
used	to	support	the	operations	described	above:	SPDX,9	CycloneDX,10	and	SWID	tags.11	Experts	in	these	formats	have	
mapped	between	them	to	create	interoperability	for	the	baseline	described	above.	Because	these	formats	already	are	
subject	to	public	input	and	translation	tools	exist,	they	serve	as	logical	starting	points	for	sharing	basic	data.12	

In	addition	to	the	three	SBOM	formats,	the	need	for	automation	defines	how	some	of	the	fields	might	be	implemented	
better.	For	instance,	machine-scale	detection	of	vulnerabilities	requires	mapping	component	identity	fields	to	
existing	vulnerability	databases.	

2

1. Are	the	elements	described	above,	including	data	fields,	operational	
considerations,	and	support	for	automation,	sufficient?	What	other	elements	
should	be	considered	and	why?		

A SBoM must be the authoritative record of when who did what to Software.

From the outset, an SBoM must be considered a multi-party asset. Changes to it can occur in
many places and it is inefficient to keep asking, checking, or sending release notes to all parties.
This does not imply all information should be public but a system that allows authorized
participants to send and receive such information must offer high levels of assurance and trust.

All stakeholders need a system that helps parties reach consensus on the state of a SBoM,
where no single actor has full control and an ability to corrupt the record or shred evidence. The
record entries need integrity, provenance, availability, non-repudiation, and immutability. All
these principles of transparency and accountability build trust.

Software is only secure until it is not. Labelling software as “safe and trustworthy” will require
new continuously delivered services throughout the operational lifespan of code that must also
be noted in the SBoM.

2. Are	there	additional	use	cases	that	can	further	inform	the	elements	of	SBOM?		

Zero Trust - The call toward Zero Trust Architecture can gain a boost from SBoMs. A fully-
machine readable, automated SBoM, analyzed against automatable treat intelligence can
provide vital meta-information for instantaneous Zero-trust authorization decisions. A SBoM
plays a key role in the gathering the right data in the right place for a decision at the right time -
real-time compliance based on real-time context.

Continuous Compliance - Demonstrating real time compliance to regulations on a continuous
basis will fundamentally change the “security theatre” of annual audits. Users would be no longer
forced to choose between out-of-date compliant configurations or up-to-date secure ones and
regulators could be well positioned to play an active participation in dealing with systemic risks.
	
	

3. SBOM	creation	and	use	touches	on	a	number	of	related	areas	in	IT	
management,	cybersecurity,	and	public	policy.	We	seek	comment	on	how	
these	issues	described	below	should	be	considered	in	defining	SBOM	elements	
today	and	in	the	future.		

Sustainability of software - The SBoM can be a means by which suppliers gain operational
insight of versions in use, versions to target long-term support and versions to retire. This can aid
lifecycle resource planning, contractual decisions, business modelling and performance
management to industry best practice.

Artificial Intelligence - Future software concerns the emergent properties of networks, especially
when using machine learning. Trustworthy Artificial Intelligence will need more than a SBoM to
prove trust in its operational state:

• What AI Model is loaded?
• What was the quality of data sources that trained/optimized the AI?
• What records are kept regarding decisions made?

3

a.	Software	Identity:	There	is	no	single	namespace	to	easily	identify	and	name	every	software	component.	The	
challenge	is	not	the	lack	of	standards,	but	multiple	standards	and	practices	in	different	communities.		

A multi-standard approach must not force one opinionated view of naming convention –
tokenizing the SBoM can enable coexistence of naming conventions.

b.	Software-as-a-Service	and	online	services:	While	current,	cloud-based	software	has	the	advantage	of	more	modern	
tool	chains,	the	use	cases	for	SBOM	may	be	different	for	software	that	is	not	running	on	customer	premises	or	
maintained	by	the	customer.		

The risk of using data produced, extracted, transformed, or loaded by software on someone
else’s computer is as present as running it on your own – whether that’s software running on a
cloud service or in constrained connected things on premises: industrial control systems or
connected sensors may not afford the end user full control of the whole technology stack. Just
because you bought it, doesn’t mean you own everything in it!
This is all about data – and full traceability of everyone’s SBoM and intellectual property that
could impact that data – would bring full transparency and the highest level of trust.

Understanding that context is vital in digital systems, especially when it comes to a more
complete Digital Bill of Materials which should include data provenance, chain-of-trust and AI
data models.

c.	Legacy	and	binary-only	software:	Older	software	often	has	greater	risks,	especially	if	it	is	not	maintained.	In	some	
cases,	the	source	may	not	even	be	obtainable,	with	only	the	object	code	available	for	SBOM	generation.	
SBoM data sharing mechanisms should allow for vendors to notify expected end-of-life events
and for end users to record what information they know of unsupported legacy code.
	
d.	Integrity	and	authenticity:	An	SBOM	consumer	may	be	concerned	about	verifying	the	source	of	the	SBOM	data	and	
confirming	that	it	was	not	tampered	with.	Some	existing	measures	for	integrity	and	authenticity	of	both	software	and	
metadata	can	be	leveraged.	
SBoM users need authenticated provenance of sources along with integrity guarantees of the
data itself. A system of record that does not allow data to be changed, only appended can help in
delivering provenance, integrity, non-repudiation and immutability to foster trust between parties.
Identity verification of all actors involved should be strongly encouraged. A consistent record
amongst authorized participants must not be and tamper evident to spot any corruption by
participants.

e.	Threat	model:	While	many	anticipated	use	cases	may	rely	on	the	SBOM	as	an	authoritative	reference	when	
evaluating	external	information	(such	as	vulnerability	reports),	other	use	cases	may	rely	on	the	SBOM	as	a	foundation	
in	detecting	more	sophisticated	supply	chain	attacks.	These	attacks	could	include	compromising	the	integrity	of	not	
only	the	systems	used	to	build	the	software	component,	but	also	the	systems	used	to	create	the	SBOM	or	even	the	
SBOM	itself.	How	can	SBOM	position	itself	to	support	the	detection	of	internal	compromise?	How	can	these	more	
advanced	data	collection	and	management	efforts	best	be	integrated	into	the	basic	SBOM	structure?	What	further	
costs	and	complexities	would	this	impose?		

The old saying “trust but verify” can and should be reversed with machines. Verify then trust –
the machines won’t be offended! Every stage of the software build cycle should include
verification of the previous step(s).

Artefacts of a secure software development process can be included in a SboM such as.

• who signed off on what?
• who committed what code?
• who reviewed and merged the code?
• What tools complied the code in what order?
• Who authorized release?
• What protects the code signing keys and who has access to them?

4

f.	High	assurance	use	cases:	Some	SBOM	use	cases	require	additional	data	about	aspects	of	the	software	development	
and	build	environment,	including	those	aspects	that	are	enumerated	in	Executive	Order	14028.13	How	can	SBOM	data	
be	integrated	with	this	additional	data	in	a	modular	fashion?		

SBOM must be extensible for connections to many more systems and human actors. Code
compilers, static code analysis, vulnerability assessments, secure development practices, audits,
security evaluations, should be considered.

High Assurance – trust in software is underpinned by an underlying Hardware Bill-of-Materials
and Trust Bill-of-Materials. Private and secret key handling is the basis of all cryptographic
security. On that basis it’s also important to consider:

• How were private keys or secrets generated and who had potential access to them while
created?

• Where are private keys are stored and what is their level of attack resistance?
• What security-oriented software handles the keys in operation – A secure enclave,

trusted execution environment or in plain sight within an app that a compromised OS
could see?

Just because there’s a certificate, does not mean all is secure. Just because you have a TPM,
does not mean all is forever secure either https://en.wikipedia.org/wiki/ROCA_vulnerability

And just because you have a SBoM, does not mean all is secure. Hardware protections,
cryptographic implementations and operational data models should be considered in an
extensible future-proof SBoM framework.

g.	Delivery.	As	noted	above,	multiple	mechanisms	exist	to	aid	in	SBOM	discovery,	as	well	as	to	enable	access	to	
SBOMs.	Further	mechanisms	and	standards	may	be	needed,	yet	too	many	options	may	impose	higher	costs	on	either	
SBOM	producers	or	consumers.		

Governance mechanisms should allow any network to easily invite supply chain participants to
share trustworthy data.

h.	Depth.	As	noted	above,	while	ideal	SBOMs	have	the	complete	graph	of	the	assembled	software,	not	every	software	
producer	will	be	able	or	ready	to	share	the	entire	graph.		

Sharing everything with everyone may be impractical and a SBoM sharing mechanism must
allow for private communication to authorized users.

i.	Vulnerabilities.	Many	of	the	use	cases	around	SBOMs	focus	on	known	vulnerabilities.	Some	build	on	this	by	
including	vulnerability	data	in	the	SBOM	itself.	Others	note	that	the	existence	and	status	of	vulnerabilities	can	change	
over	time,	and	there	is	no	general	guarantee	or	signal	about	whether	the	SBOM	data	is	up-to-date	relative	to	all	
relevant	and	applicable	vulnerability	data	sources.		

Things are only secure until they are not. Tracing the timestamps of who knew what when can
help establish whether known vulnerabilities are present in certain versions of software.

Responsible disclosure can pressure vendors to fix before a publication deadline. A SboM data
sharing mechanism could notify users of a responsibly disclosed vulnerability without sharing full
details until the disclosure deadline. This would let users know that vendors are aware of an
issue and creating a patch, and then prepare a maintenance window as soon as the fix is
available to minimize time of exposure.

5

j.	Risk	Management.	Not	all	vulnerabilities	in	software	code	put	operators	or	users	at	real	risk	from	software	built	
using	those	vulnerable	components,	as	the	risk	could	be	mitigated	elsewhere	or	deemed	to	be	negligible.	One	
approach	to	managing	this	might	be	to	communicate	that	software	is	‘‘not	affected’’	by	a	specific	vulnerability	
through	a	Vulnerability	Exploitability	eXchange	(or	‘‘VEX’’),14	but	other	solutions	may	exist.		
	
Decisions to proceed with full knowledge of a vulnerability, should be recorded in data sharing
systems that notify federal customers of assessed and accepted risks.

4.	Flexibility	of	implementation	and	potential	requirements.	If	there	are	legitimate	reasons	why	the	above	elements	
might	be	difficult	to	adopt	or	use	for	certain	technologies,	industries,	or	communities,	how	might	the	goals	and	use	
cases	described	above	be	fulfilled	through	alternate	means?	What	accommodations	and	alternate	approaches	can	
deliver	benefits	while	allowing	for	flexibility?		

Easy to access, distributed ledger based technologies are key to building the multi-stakeholder
trust and transparency required in xBoM implementations.

