

Response to Software Bill of Materials Elements and

Considerations, Concerns and Questions
Alexander M. Hoole

Fortify Software Security Research
Micro Focus International PLC

Santa Clara, USA
alexander.hoole@microfocus.com

Michael F. Angelo, CISSP CRISC CDPSE
CyberRes Chief Security Architect

Micro Focus International PLC
Houston, USA

michael.angelo@microfocus.com

Luther Martin
Voltage

Micro Focus International PLC
Santa Clara, USA

luther.martin@microfocus.com

Abstract— Within the bounds of the request for comments
several key concerns and questions must be raised. Specifically,
issues around enhanced, or increased, exposure beyond legitimate
users; potential reductions to the barriers of entry for attackers
conducting reconnaissance and weaponization; and impact upon
intellectual property and licensing. Furthermore, understanding
the inherent risks associated with the potential for weaponization
via the analysis of nested components embedded within the
transitive closure of dependencies contained within, or derived
from, a Software Bill of Materials (SBOM). Finally, it is not only
the presence of a single SBOM, for a single piece of software, that
is at risk; rather the analysis of many SBOMs, in concert, provides
the opportunity to identify shared nested dependencies among the
software used by many targets. Thus, enabling attackers to find
common components that can be researched for new 0Day
vulnerabilities yielding a larger field of targets. Unlike disclosed
vulnerabilities which can be tracked in association to SBOMs,
0Day vulnerabilities remain undisclosed and fully weaponized.

I. INTRODUCTION

Thank you for the opportunity to respond to the proposal for
the Software Build of Materials (SBOM). We are concerned
that the claimed values will not achieve the desired effect. We
believe the claims of enhanced security through public
knowledge of lower-level vulnerabilities and compliance with
licensing, while on the surface sound great, will in reality not be
met. While the RFC does not explicitly specify that SBOMs
could/should be made public, the debate of the potential
advantages and disadvantages to the security of software
systems is extremely important. In this paper, we will first
present a contextual use case that will be illustrative as we
describe both positive and negative side effects of SBOM
implementations for enterprise/mission critical software (such
as increased transparency and reduced effort towards
weaponization, respectively).

II. CONTEXTUAL EXAMPLE

To begin, we would contend that the SBOM, is not a
security item itself. It is a ledger depicting the dependencies
(perhaps transitive) contained within a software product. The
questions then become ' what is the ledger used for today?', and
'what could it be used for in the future?'.
Consider the following Ledger depicting a product component
dependency scenario (Figure 1).

Product
Alpha

Component A

Component B

Component C

Component D

Figure 1: Dependency Tree – Transitive closure example.

Figure 1, shows a product with simple dependencies in a
component chain where we have,

• product Alpha using component A

• component A using component B

• component B using component C

• component C using component D.
Note for the purposes of this response A, B, C and D are all

external components (open source or commercial).

Consider the following transitive ledger walk through shown in
Figure 2:

• Component D detects a vulnerability and releases an
update. The owner of Component D follows

responsible disclosure practices and files a CVE with
MITRE.

• Component C notices component D’s CVE.

• Component C evaluates the vulnerability (figure 3)
addressed in Component D. If component C determines
the issue is not relevant nothing externally is done. If
component C is vulnerable, the developers will update
Component C and file a CVE update (saying the
component was susceptible to attack as described in
Component D).

• Components B, A, and Product Alpha would follow a
similar process as each of the dependent
subcomponents published their vulnerability. If a
subcomponent was not vulnerable, then the customer
would never be aware of the potential vulnerability and
would not need to do anything. If the overall end state
is reached, it implies that there are no known
vulnerabilities present in any of the components within
the product.

It is important to remember that the time to handle the
vulnerability, and the delay in the time to start handling the
vulnerability, will increase for each element in the chain as the
complexity of the consuming element increases. For the
following scenario, each component analysis is performed as
demonstrated in Figure 3. If the scenario assumes a transitive
ledger SBOM, as shown in Figure 2, the following timing could
apply1:

• [D] announces a vulnerability.

• [C] responds to the vulnerability (analyze, incorporate the
mitigation provided by [D], test and package the update)
which takes 4 days due to the size and nature of component
[C] and the amount of time it takes to become aware of a
CVE disclosure from [D]2. For example, it may take one
day to become aware of the CVE and three days to provide
a working patch.

• [B] would detect the vulnerability in [D]. [B] would have
to wait for [C]’s mitigation and announcement of patch.
Due to the complexity of [B], it may take 7 days, after
becoming aware (in addition to the four days required by
[C]), and to provide an update which integrates [C]’s patch
into [B].

• [A] would also detect the vulnerability in [D]; But would
have to wait for [B]’s integration and announcement of
[C]’s patch (which is blocked by having to wait for [C]’s
mitigation). Due to the complexity of [A], it may take 14
days to provide an update.

• Finally [Alpha] would also detect the vulnerability in [D];
But would have to wait for all components to provide a
mitigation [A-D]. Due to the complexity of [Alpha], it may

1 These times are qualitative estimates intended to be representative of what is

observed in industry.
2 A CVE disclosure from [D] may take several days before it is made

available to consumers.
3 As an example, consider the statistics for software vendors to update an

android application with known vulnerabilities.
https://dl.acm.org/doi/abs/10.1145/3372297.3423346. In this case, android

take 28 days to analyze, incorporate the mitigation
provided by [A], test and package the update.

Figure 2: Vulnerability Mitigation Flow - depicting a vulnerability

and mitigation flow back up to the product.

In this case, a transitive SBOM would create an exposure time
for Alpha customers of 53 days assuming no issues were found
in the component adoption and the customer deployed the
update as soon as it was released 3 . This also assumes the
customer could deploy immediately and they would not need to
perform any infrastructure analysis or internal testing of their
own.

made an update available witch took 24 days for the manufacturers and
suppliers to deploy. It then took an additional 11 days for users to accept the
update. Unfortunately, these statistics do not address individual component
updates times which lead to the update roll-out. Therefore, in our scenarios we
are ignoring the supplier / manufacturer timeframe and are assuming it is
based on complexity of code. However, if we followed these time
calculations, it would take an additional 11 days for each customer to deploy
the product.

https://dl.acm.org/doi/abs/10.1145/3372297.3423346

Review

Test

Fix
Is Vulnerability

valid?
Document

Define Test

Test Fix

Package

Release

N Y

Return Validity
Status

Figure 3:Handling Vulnerability - depicting a typical vulnerability

handling process.

During this time hackers could attempt to target [Alpha] users
and create an exploit. This gets worse when we consider that
element [A] may be used by more than just [Alpha].

In Figure 3, the Documentation path could be a shortcut in
terms of steps to be completed to mitigate risk. However, given
the nature of customers and the potential for issues related to
incomplete risk assessment of a disclosed CVE or the amount
of work to complete an extensive risk assessment, the shortened
path for documenting a non-impacting response of Figure 3 will
be unlikely. When there are many reported risks for a piece of
software, mechanisms used to evaluate the reachability or
exploitability of a suspected risk could be used to prioritize
work. It is not recommended to use evidence of such tools as
documented proof that a risk is not reachable. It is often
recommended to "simply" apply the fix.

III. CONCERNS REGARDING SBOM

(i.e., Product Alpha only reports Component A)
The SBOM for a software artifact produced within the

developing organization improves visibility and transparency
in order to accomplish goals such as understanding architecture,
security risks, and licensing. Are there also positive and
negative side effects of having an SBOM?

4 https://www.theregister.com/2021/04/06/sap_patch_attacks
5 https://www.fireeye.com/blog/threat-research/2020/04/time-between-
disclosure-patch-release-and-vulnerability-exploitation.html

A. Side effects of a disclosed SBOM

There are many possible side effects of the proposed
SBOM. Some positive, such as improved understanding
and transparency of the composition of software. Some
negative, such lowering the barrier to weaponizing an attack
against specific targets. First, we discuss several negative
side effects.

1) Weaponization

Data on time to weaponize vulnerabilities is scarce, some

entities claim as little as 72 hours4, while others claim 27%

of all vulnerabilities are weaponized within one month5.

Analysis and subsequent documentation, as represented in

Figures 1-3, could reduce the impact, exposure, and

consequences of vulnerabilities in a dependency tree 6 .

Thus, all products would have to adopt the vulnerability

mitigation. Failure to do so would result in a deluge of

impact requests and justifications.

In theory when component [A], from Figure 1, filed a

vulnerability disclosure this would provide an attacker 28

days to create an exploit against product [Alpha]. This

having been said, if everyone filed an SBOM, a transitive

closure dependency tree would be trivial to generate

(provided the attacker has access to the targeted software)

and subsequent CVE analysis would give the attacker

multiple 0Day opportunities with potentially lengthy attack

windows, 53 days in the case of [Alpha], to create and

deploy an exploit prior to a product update being released.

Again, this is assuming that the customer applied the update

as soon as it was released. Even if we factor in time, to

weaponize, the attacker would have a significant period to

carry out attacks which would leave the consumer exposed.

Furthermove, consider a situation where all software had

published SBOMs, then malicious reconnissence could be

conducted to identify a set of targets to be attacked based

upon software they all use. Mining of the SBOMs of

software that are common to the targets for shared

dependencies would expose specific software to research

for novel vulnerabilities. Once the dependencies are

identified, any 0day vulnerabilities found in those shared

dependencies would have an “open window” for attack

until someone detects a breach or an independent non-

malicious actor responsibly discloses the vulnerability.

We could not find any statistics for the scenario in which a

deployed mitigation introduced secondary issues, we

believe this will be a concern as entities rush to create and

deploy mitigations.

6 This covers primary and secondary dependencies as well as the transitive

closure dependency trees.

https://www.theregister.com/2021/04/06/sap_patch_attacks
https://www.fireeye.com/blog/threat-research/2020/04/time-between-disclosure-patch-release-and-vulnerability-exploitation.html
https://www.fireeye.com/blog/threat-research/2020/04/time-between-disclosure-patch-release-and-vulnerability-exploitation.html

2) Reduced barrier to weaponization

Reducing the competency scale required for

reconnaissance by attackers to determine components that

are in scope for attacking a particular target. Consider the

following attacker capability scale:

[Low Capability]

Kids
Students
College Students
Experts
Criminals
Nation State actors

[High Capability]

A published SBOM would move the bar towards the low
capability on the above scale for weaponization of

disclosed, and undisclosed vulnerabilities.

3) Remediation gaps

For consumers, the ultimate remediation concern that needs

to be addressed for an SBOM is that the transitive closure

of depencies is free of exploitable known vulnerabilities. A

software provider defines a remediation process for timely

mitigation of risks, where a transitive dependency tree (n

levels deep) contains a vulnerability at position n-1 and the

consuming component (n-2) is a third-party component.

There is a potential continuity gap in delivering remediation

when componet (n-2) cannot deliver a software update in a

timely fashion. Thus, the mitigation of the complete

dependency tree has a temporal gap until other compoent

providers complete their independent remediation steps.

4) Intellectual Property Exposure

The SBOM for a proprietary product, coupled with the

actual product, would enable the re-creation of that product

by an individual knowledgable in the arts. This recreation

would create challenges for companies in protecting their IP

from theft and unauthorized derrivative products..

While there are multiple negative side effects related to
weaponization of flaws found in dependencies, discussing
some of the noted beneficial side effects is also warranted.

5) Licensing

Another element that has been attributed to the SBOM is an

enhancement to license enforcement. This may not be the

case, as Product [Alpha] would not be aware of licensing

agreements other than with a direct component (i.e. [A]).

Explicitly product [Alpha] would not have any knowledge

of the legal agreements that various parties hold within the

ledger. Hence each party within the ledger would have to

disclose all license agreements. These agreements are

highly sensitive and would adversely affect an entity’s

ability to negotiate a contract.

6) Creation of temporary mitigations

Customers can attempt to validate exposure to disclosed

vulnerabilities contained within the transitive dependency

tree and create temporary mitigations. Furthermore,

customers can attempt to create a temporary mitigation

plan for when vulnerabilities are disclosed against known

dependencies within their transitive dependency tree (i.e.

mitigations to be in play "until" and update is available).

7) Creation of internal database of shared components

Customers can create a database of their applications

which share common components across the set of all

transitive dependency trees within their portfolio of

applications. This can then be queried to identify which

applications are potentially at risk to a newly disclosed

vulnerability.

If we look at the value proposition to a defender, having a

database containing the transitive closure of depedencies

for each software artifact, it creates a situation in which

they get to watch the attack develop, but cannot act on the

vulnerable software (i.e. great visibility, but no

empowerment to handle). Specifically, if the software flaw

which is realized in the vulnerability resides in software that

the defender does not have ownership/write permissions,

they must wait until an update becomes available.

8) SBOM Access

The question of who would or could receive the SBOM needs

to also be considered.

If SBOMs are made available outside of the developer

environment, we must also consider the imputed risk.

Several levels of dissemination are conceivable, including

the following:

• Origin only:

The SBOM materials are protected and utilized within

the software company only. The SBOM is used to

identify, evaluate and mitigate transitive issues within

the product line.

• Selective:

The SBOM is disseminated based on a perceived need-

to-know. This information could be used to provide

procedural mitigations for exposures prior to vendor

provided mitigations. While on the surface this

practice sounds reasonable, it creates three issues.

o Selective SBOM disclosure in today’s market

creates issues for entities that receive the

information and those that do not. Those that

do not receive the SBOM are left at a

disadvantage to those that do receive it.

o Selective SBOM creates issues for companies

deciding who can have access and who can’t.

If the SBOM was provided to a US

government entity, then all non-US

government entities could claim entitlement.

The penalty for not giving access would be a

closed market. This was discussed in the

early1990’s as part of the SkipJack and

Clipper proposals.

o Selective SBOM disclosure does not

gawrantee they will not be made public or

shared amongst other organizations.

• Global:

The SBOM is published, and anyone can gain access to

the materials. This bares the issues we have already

discussed earlier in this document.

B. Activities enabled by SBOM

While there are concerns that need to be debated, we would be
amiss to not raise some of the activities that are also enabled by
the presence of an SBOM for software.

1) Consumer risk mitigation
o Procurement
o Lifetime maintenance

▪ If risk – how long to get fixed?
o Customers can request flaw remediation and

estimated response time (tolerance) for disclosed
vulnerability.

CONCLUSIONS

1. SBOM tracking for internally developed software has
obvious advantages

2. SBOM tracking of open-source software, particularly
components, has obvious advantages

3. SBOM public disclosure of systems that are not publicly
available has questionable advantages due to the stated
risks, such as reduced cost of reconnaissance, associated
with transparency of information to those who do not satisfy
a need-to-know in accordance with the principal of least-
privilege.

4. SBOM is not a security control, in the sense of enforcing or
enabling confidentiality/integrity/availability. SBOM is a
ledger system. Regarding security through/by obscurity, we
cannot lose sight of why authentication and access control
mechanisms were created in the beginning. Not everyone
should have immediate access to sensitive information.
This is not due to a lack of transparency, but rather an
intentional security control to reduce risk. For example,
elongating the time to successfully attack a new risk which
exists N-levels deep in the transitive closure of
dependencies for a given piece of software.

5. Sharing a SBOM with a specific external party based upon
need-to-know can suffer the same challenges regarding
information leakage as with enforcing Mandatory Access
Control (MAC) and Discretionary Access Control (DAC).
Specifically, an individual who has access to the
information can leak it to additional parties via copy/paste,
screen capture, or simply taking a photograph. The question
now becomes, who should have access to which level of
detail.

6. Sharing an SBOM with select external parties may create
issues with users. This practice would leave some users
exposed while enabling others to be protected. We have
seen similar issues with security issue pre-announcement to
selected users (I.e., not all at the same time).

MOVING FORWARD

While not all SBOM concerns are addressed in this RFC, we
have attempted to make sure that the landscape has been well
described. With this in mind, we believe that, perhaps an
SBOM should go beyond a ledger system and consider the

following:

• Overall security of infrastructures:
While we are looking at products, to define secure
software, we are not focusing on securing the system.
Not only is the system critical, but so are the deployment
and usage paradigms.

• SBOM handling and usage requirements:
Exposure of SBOMs (to any entity) can create a targeting
system for all bad actors. Perhaps a complement would
be to look at certifying companies processes for review
and handling of vulnerabilities in third-party components.
This would be best facilitated by SBOMs usage
internally. This raises the question of what should be
shared:

o Applications using SBOMs would not need to be
disclosed.

o Components or elements which are not able to
be executed need complete SBOMs

Overall, SBOMs can provide many benefits to manufactures of
software and through them their consumers. The points raised
in this paper, particularly around weaponization and time-to-
attack should hopefully encourage further debate.

ACKNOWLEDGMENT

We would like to thank NTIA for the opportunity to provide
feedback on the Software Bill of Materials Elements and
Considerations.

	I. Introduction
	II. Contextual Example
	III. Concerns Regarding SBOM
	A. Side effects of a disclosed SBOM
	1) Weaponization
	Data on time to weaponize vulnerabilities is scarce, some entities claim as little as 72 hours , while others claim 27% of all vulnerabilities are weaponized within one month .
	Analysis and subsequent documentation, as represented in Figures 1-3, could reduce the impact, exposure, and consequences of vulnerabilities in a dependency tree . Thus, all products would have to adopt the vulnerability mitigation. Failure to do so ...
	In theory when component [A], from Figure 1, filed a vulnerability disclosure this would provide an attacker 28 days to create an exploit against product [Alpha]. This having been said, if everyone filed an SBOM, a transitive closure dependency tree ...
	Furthermove, consider a situation where all software had published SBOMs, then malicious reconnissence could be conducted to identify a set of targets to be attacked based upon software they all use. Mining of the SBOMs of software that are common to ...
	We could not find any statistics for the scenario in which a deployed mitigation introduced secondary issues, we believe this will be a concern as entities rush to create and deploy mitigations.
	2) Reduced barrier to weaponization
	Reducing the competency scale required for reconnaissance by attackers to determine components that are in scope for attacking a particular target. Consider the following attacker capability scale:
	3) Remediation gaps
	For consumers, the ultimate remediation concern that needs to be addressed for an SBOM is that the transitive closure of depencies is free of exploitable known vulnerabilities. A software provider defines a remediation process for timely mitigation of...
	4) Intellectual Property Exposure
	The SBOM for a proprietary product, coupled with the actual product, would enable the re-creation of that product by an individual knowledgable in the arts. This recreation would create challenges for companies in protecting their IP from theft and u...
	5) Licensing
	Another element that has been attributed to the SBOM is an enhancement to license enforcement. This may not be the case, as Product [Alpha] would not be aware of licensing agreements other than with a direct component (i.e. [A]). Explicitly product [...
	6) Creation of temporary mitigations
	Customers can attempt to validate exposure to disclosed vulnerabilities contained within the transitive dependency tree and create temporary mitigations. Furthermore, customers can attempt to create a temporary mitigation plan for when vulnerabilities...
	7) Creation of internal database of shared components
	Customers can create a database of their applications which share common components across the set of all transitive dependency trees within their portfolio of applications. This can then be queried to identify which applications are potentially at ri...
	If we look at the value proposition to a defender, having a database containing the transitive closure of depedencies for each software artifact, it creates a situation in which they get to watch the attack develop, but cannot act on the vulnerable so...
	8) SBOM Access
	The question of who would or could receive the SBOM needs to also be considered.
	 Origin only:
	The SBOM materials are protected and utilized within the software company only. The SBOM is used to identify, evaluate and mitigate transitive issues within the product line.
	 Selective:
	The SBOM is disseminated based on a perceived need-to-know. This information could be used to provide procedural mitigations for exposures prior to vendor provided mitigations. While on the surface this practice sounds reasonable, it creates three i...
	o Selective SBOM disclosure in today’s market creates issues for entities that receive the information and those that do not. Those that do not receive the SBOM are left at a disadvantage to those that do receive it.
	o Selective SBOM creates issues for companies deciding who can have access and who can’t. If the SBOM was provided to a US government entity, then all non-US government entities could claim entitlement. The penalty for not giving access would be a c...
	o Selective SBOM disclosure does not gawrantee they will not be made public or shared amongst other organizations.
	 Global:
	The SBOM is published, and anyone can gain access to the materials. This bares the issues we have already discussed earlier in this document.

	B. Activities enabled by SBOM
	1) Consumer risk mitigation
	Conclusions
	Moving Forward
	Acknowledgment

