
Jen Ellis

VP, Community & Public Affairs

Rapid7

120 Causeway Street

Suite 400

Boston

MA 02114

rapid7.com

jen_ellis@rapid7.com

National

Telecommunications and

Information Administration

U.S. Department of

Commerce

1401 Constitution Ave., N.W.

Washington, D.C. 20230

June 17, 2021

The below details Rapid7’s response to the National Telecommunications and Information

Administration RFC on Software Bill of Materials (SBOM) Elements and Considerations (RIN

0660-XC051). Thank you for the opportunity to provide input and support efforts to strengthen

cybersecurity and increase trust and transparency in the software supply chain.

Rapid7 is a US-based cybersecurity and data analytics firm, headquartered in Boston, with offices

in Washington, D.C., Austin, TX, and around the world. Rapid7’s solutions and services manage

cybersecurity risk and simplify the complex, allowing security teams to work more effectively with

IT and development to reduce vulnerabilities, monitor for malicious behavior, investigate and

respond to attacks, and automate routine tasks. Over 8,900 customers worldwide rely on Rapid7

technology, services, and research to improve cybersecurity outcomes, protect consumers, and

securely advance their organizations.

Rapid7 understands an SBOM to be a detailed and complete breakdown of the components of a

delivered software product or service. This covers the origins and ongoing ownership of all first

and third party elements. This enables users to then investigate vulnerability information

associated with these components.

In general, Rapid7 believes SBOMs can help provide greater transparency and accountability for

cybersecurity in the supply chain; however, the measure of its impact will reside in how it is

deployed. Consistency, automation, interoperability, and as far as possible, reduction of

complexity, will all be key to ensuring SBOMs drive value for security programs. In addition, Rapid7

believes there must be a path to maturity and that path should consider how organizations below

the security poverty line may be able to start to interact with SBOMs and realize some limited

value.

If poorly implemented, SBOM has the potential to create confusion for receivers and place a high

burden on providers, with no real value to show for it. A core element of making SBOMs viable will

1

mailto:jen_ellis@rapid7.com


be developing a comprehensive scheme for identifying and referring to software components, as

referenced in more detail below. Additionally, since software is constantly being iterated, there

needs to be greater clarity around expectations for updating and maintaining SBOMs. There must

be a balance between keeping information up-to-date and over-burdening providers.

In the journey towards realizing the value of SBOMs, there is a great deal of complexity and many

questions that need to be addressed. We urge the government to take the appropriate steps and

time to find necessary, pragmatic solutions, and not hurry to roll this out to an arbitrary timeline

that may end up causing more harm than good.

* * *

Q1. Are the elements described above, including data fields, operational considerations, and

support for automation, sufficient? What other elements should be considered and why?

The elements are mostly sufficient as overarching goals and outcomes.

One potential critical data field that is missing is the concept of a “backport”. Operating system

distributions such as Ubuntu Linux have package managers that bundle distributions for

components such as “Apache HTTPD”. It is often the case when distribution is “frozen” that

emerging vulnerabilities in such components are not updated to the current new build level, but

the vulnerability fix is “backported” into the existing codebase (and, thus, package builds), yet the

version identifier remains the same. Rather than reflect this condition in a sub-component of a

baseline component data field, it would be advantageous to have it be a separate, structured

baseline field to facilitate expedient determination of the vulnerable status of a given component.

It is also unclear how an SBOM should reflect packages that include modifications to the source.

If the modifications are not captured, important information could be missed and software

inventory may be inaccurate. However, if modifications require additional tailored SBOMs that can

result in a heavy burden on vendors and a confusing amount of information for receivers. There

needs to be some balance in the way this is addressed.

NTIA could mitigate some potential resource waste and increase adoption if there were explicitly

defined ways of noting that a component is/was not exploitable in the way the supplier is using it.

While each of the three aligned SBOM standards provide some ability to annotate an SBOM with

this information, it would help if NTIA standardized the specification.

2



Furthermore, a software/hardware provider may choose to fix a discovered vulnerability internally

in their own, maintained version of the component codebase but not issue, or may be unable to

issue, an upstream patch to the source. The “Version of the component” baseline component field

should provide a way for this to be documented to avoid errors in human or automation analyses

that would report the component as otherwise vulnerable.

There are also some considerations that may be missing in associated details that will be

addressed in the sub-paragraphs of question 3.

Q2. Are there additional use cases that can further inform the elements of SBOM?

The discussions around SBOM have, rightly, focused primarily on providing transparency to the

external consumers of a software or hardware product. It could be beneficial (to support

wider-spread adoption of SBOM) to include use cases where internal teams or product owners

can use the SBOM information for decision making, e.g. whether to ship a software product with a

known sub-component that has a known vulnerability that may not be exploitable in the way the

component is presently used but would be safer if there was a delay until the next component

release comes out.

While the SBOM is useful as a tool to document in-use components for a given consumer, large

government departments/agencies or larger organizations may benefit if there is an example use

case demonstrating a cross-functional, enterprise-wide view of dependencies, versions, and

vulnerabilities.

Furthermore, documented use cases around the complementary relationship between SBOM and

existing vulnerability remediation and management practices could also help support

wider-spread adoption of SBOM outside of the initial, Federal mandate.

3



Q3. SBOM creation and use touches on a number of related areas in IT management,

cybersecurity, and public policy. We seek comment on how these issues described below

should be considered in defining SBOM elements today and in the future.

a. Software Identity: There is no single namespace to easily identify and name every software

component. The challenge is not the lack of standards, but multiple standards and practices

in different communities.

There needs to be a way to either have a unified identity database/namespace — similar to a

UL Product Id1, FCC ID2, etc. to ensure a common source of truth or the mandated ability to

translate between formats without loss of granularity or integrity.

b. Software-as-a-Service and online services: While current, cloud-based software has the

advantage of more modern tool chains, the use cases for SBOM may be different for

software that is not running on customer premises or maintained by the customer.

Organizations that leverage SaaS solutions are no less at risk of data loss, data theft, or loss

of business continuity due to vulnerability exploitation than those that procure and deploy and

maintain services internally. Despite the availability of modern toolchains, there are still large

percentages of cloud-based services that do not take advantage of these advanced

processes and technologies.

SBOM requirements should include the need to provide a mechanism for consumers of SaaS

services to query or receive published updates of the SBOM of any service they use. This

would encourage the standardization and automation of releases which would have a positive

impact on overall platform safety and resilience as well as transparency.

c. Legacy and binary-only software: Older software often has greater risks, especially if it is not

maintained. In some cases, the source may not even be obtainable, with only the object code

available for SBOM generation.

Relevant legacy and binary-only software should absolutely be covered in an SBOM. One

approach could be to hold an identifier for each specific version of legacy or binary-only

software that has an officially maintained SBOM that is updated via an open and transparent

process whenever new sub-components or general vulnerabilities are identified. This does not

conflict with the spirit or actual details of the present SBOM proposal since it would enable

incremental transparency of the components of such sourced products.

2 FCC ID Search | Federal Communications Commission
1 UL Certification Database | UL

4

https://www.fcc.gov/oet/ea/fccid
https://www.ul.com/services/digital-applications/ul-certification-database


It is unclear what the expectations will be in situations where components are no longer

supported or their providers do not provide an SBOM themselves - would the burden fall on

the third party that is incorporating these elements into their software product be responsible

for providing an SBOM for the components? If so, presumably, multiple third parties may

create SBOMs for the same components - does this raise any concerns over conflation or lack

of consistency? Some components may break down further into components, potentially

creating a sort of layered up hierarchy of SBOMs; how many layers down should providers go -

do they need to provide SBOMs all the way through the stack? These questions likely apply to

legacy systems, but could also apply more broadly and may be somewhat addressed in

question h. below.

d. Integrity and authenticity: An SBOM consumer may be concerned about verifying the source

of the SBOM data and confirming that it was not tampered with. Some existing measures for

integrity and authenticity of both software and metadata can be leveraged.

Given the data formats involved and the potential ways to publish and consume SBOM, the

use of battle-tested processes such as cryptographic digital signatures should provide ample

means to validate the integrity and authenticity of a published SBOM all the way down through

chained/dependent components. Given that a key baseline component field is “Cryptograph

hash of the component”, adding another cryptographic component that applies to the SBOM

itself should not be an onerous task for suppliers and should be easy to consume by

procurers.

SBOM could also take cues from TLS certificate issuance and “valid from” and “valid to” fields,

with the “valid to” field being blank until the component SBOM is superseded by the next

generation. Semantic versioning of SBOMs could be used instead provided there is a central

directory where “latest” and “current” component SBOM metadata could be retrieved.

This is one of the areas where extra baseline component fields may be in-order.

e. Threat model: While many anticipated use cases may rely on the SBOM as an authoritative

reference when evaluating external information (such as vulnerability reports), other use

cases may rely on the SBOM as a foundation in detecting more sophisticated supply chain

attacks. These attacks could include compromising the integrity of not only the systems

used to build the software component, but also the systems used to create the SBOM or

even the SBOM itself. How can SBOM position itself to support the detection of internal

compromise? How can these more advanced data collection and management efforts best

5



be integrated into the basic SBOM structure? What further costs and complexities would this

impose?

Given the difficulty of preventing a supply chain attack against generated SBOMs across all

generation contexts, it may make more sense to assume there will be instances where

sophisticated, capable attackers do compromise the generation or consumption processes

and provide a means for notification of such an event (after detection/verification) occurring

to enable quicker remediation. Discovery of these events remains a huge challenge.

f. High assurance use cases: Some SBOM use cases require additional data about aspects of

the software development and build environment, including those aspects that are

enumerated in Executive Order 14028.[13] How can SBOM data be integrated with this

additional data in a modular fashion?

Given that not all SBOM consumers (i.e. organizations outside the scope of EO 14028) will

want, need, or be able to utilize the extended attributes associated with this high assurance

use case, this is an area where the baseline “required” fields can — in a fairly straightforward

fashion — be augmented with a voluntary option field or set of fields to accommodate use

cases where higher assurance is desired. Many higher assurance situations already have

methods and procedures in place for documenting and exchanging this type of information

and it should likely not be a high priority for the working group.

g. Delivery. As noted above, multiple mechanisms exist to aid in SBOM discovery, as well as to

enable access to SBOMs. Further mechanisms and standards may be needed, yet too many

options may impose higher costs on either SBOM producers or consumers.

Imposing restrictions on discovery and consumption mechanisms could do more harm than

good. As an example, if the “SOAP” XML standard had been a hard — and cumbersome to

amend — mandate, advancements such as JSON, REST APIs, and Graphql would likely not

have been as quick to emerge. The current use of SBOM in industry is small compared to the

proliferation of API-based services and SBOM discovery can only benefit by existing in the

marketplace at-large and allowing innovation to surface the “best” ways to handle publishing,

discovery, and consumption.

It would be beneficial if NTIA define some accepted methods to make it easier for SBOM initial

adoption and provide fodder that industry groups can use to extend/enhance/refine.

6



h. Depth. As noted above, while ideal SBOMs have the complete graph of the assembled

software, not every software producer will be able or ready to share the entire graph.

This is another case where an additional baseline field for “completeness” may be in order to

help organizations identify continued “unknown unknowns”. However, the risk associated with

opaque elements in an SBOM tree should be addressed in some way. One potential avenue

could be to require providers to flag this potential risk to receivers. Another could be to apply

limits for how many or how long these blind spots can be included, with associated “penalties”

levied by agencies (as it pertains to the EO) and organizations (as they voluntarily participate

in adopting SBOM practices).

The working group facilitating the specifics of SBOM for the EO should be tasked with defining

a realistic exception process with achievable time-frames for “remediation” of the SBOM

record.

i. Vulnerabilities. Many of the use cases around SBOMs focus on known vulnerabilities. Some

build on this by including vulnerability data in the SBOM itself. Others note that the existence

and status of vulnerabilities can change over time, and there is no general guarantee or

signal about whether the SBOM data is up-to-date relative to all relevant and applicable

vulnerability data sources.

Having a unique identifier (See 3a) would enable all third party vulnerability databases to

provide a mapping so no direct vulnerability data needs to be included within the SBOM itself.

This would also enable the referencing of vulnerabilities that have no associated CVE

identifiers which is vital since many vendors now issue advisories for some vulnerability

issues instead of CVE identifiers.

We reiterate the need within SBOM to identify that a given vulnerability or set of vulnerabilities

is not exploitable in the configuration used in/by the component the SBOM is documenting.

j. Risk Management. Not all vulnerabilities in software code put operators or users at real risk

from software built using those vulnerable components, as the risk could be mitigated

elsewhere or deemed to be negligible. One approach to managing this might be to

communicate that software is “not affected” by a specific vulnerability through a

Vulnerability Exploitability eXchange (or “VEX”),[14] but other solutions may exist.

The VEX concept has significant merit and is likely the path of least friction, especially given

the alignment to OASIS CSAF and existing work with the various SBOM Healthcare PoCs.

7



Q4. Flexibility of implementation and potential requirements. If there are legitimate reasons

why the above elements might be difficult to adopt or use for certain technologies, industries,

or communities, how might the goals and use cases described above be fulfilled through

alternate means? What accommodations and alternate approaches can deliver benefits while

allowing for flexibility?

Given that the current objective is to support the timely implementation of the EO, the elements

described in the RFI should be considered reasonable expectations for any supplier to the Federal

government. However, one accommodation that may enable faster creation and publication of

SBOMs (for smaller suppliers) would be the facilitation of the creation of easily deployable open

source projects that extend existing open source projects and make it as easy as possible for a

supplier of limited capacity to continue to deliver products and services to the U.S. government.

* * *

Thank you for giving us the opportunity to share our views. For any additional questions or

feedback, please contact Jen Ellis at jen_ellis@rapid7.com.

8

mailto:jen_ellis@rapid7.com

