
Survey of Existing SBOM Formats and Standards - Version 2021

1

Survey of Existing SBOM
Formats and Standards

Credit: Photo by Patrick Tomasso on Unsplash

NTIA Multistakeholder Process on Software Component Transparency
Standards and Formats Working Group

https://unsplash.com/@impatrickt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/books?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Survey of Existing SBOM Formats and Standards - Version 2021

2

Background & Problem Statement 4

Goals of This Document 4
Three Key Formats 5

Lifecycle of an SBOM 7
How to Produce SBOMs 7
How to Deliver SBOMs 8
How to Update SBOMs 8
How to Consume SBOMs 9

Overview of Key Formats 10
SPDX 10

Description 10
Use Cases 12
Key Features 12
SPDX and SBOM 13
Future Directions 13

CycloneDX 13
Description 14
Use Cases 15
Key Features 15
CycloneDX and SBOM 15
Future Directions 16

SWID 16
Description 16
Use Cases 18
Key Features 18
SWID Tags and SBOM 18
Future Directions 18

Translation and Harmonization Guidance 18
Example Scenario 19
SPDX (tag-value) 20
CycloneDX (XML) 21
SWID (XML) 23

Software Identity Formats 25
Concise SWID Tag (CoSWID) 25
Common Platform Enumeration (CPE) 26
Package-URL (purl) 27
SoftWare Heritage persistent IDentifiers (SWHID) 28

Changes 30

Survey of Existing SBOM Formats and Standards - Version 2021

3

About the Authors of This Document 30

Survey of Existing SBOM Formats and Standards - Version 2021

4

Background & Problem Statement
Modern software systems involve increasingly complex and dynamic supply chains.
Unfortunately, the composition and functionality of these systems lacks transparency; this
contributes substantially to cybersecurity risks, alongside the cost of development, procurement,
and maintenance. This has broad implications in our interconnected world; risk and cost affect
collective goods, like public safety and national security, in addition to the products and services
upon which businesses rely.

The NTIA Software Transparency Working Group on Standards and Formats was formed at the
outset of the NTIA initiative in 2018 to assess available current formats for software bills of
materials as well as forward-looking use-cases identified by other working groups or
communities of practice.1 The working group investigated existing standards, formats, and
initiatives as they apply to identifying the external components and shared libraries (proprietary
or open source) used in the construction of software products. The group analyzed efforts
already underway by other groups related to communicating this information in a machine-
readable manner. While proprietary formats that may meet these purposes exist, the group has
not considered these proprietary formats.

The original survey was published in late 2019, after drafts were reviewed by the broader NTIA
community. As the SBOM community grew, and implementation increased, the original working
group expanded its focus to highlight the benefits of the SBOM tooling ecosystem, and the
value of coordinating and harmonizing across the technical SBOM world. As part of this effort,
the working group observed that, by 2021, parts of the document were out of date or less
relevant. This 2021 revision offers several improvements on the original draft, and should be
considered the stakeholder consensus until further updated. A key takeaway—that the baseline
SBOM data can be conveyed in any of the formats described below, and the ecosystem can
and should support interoperability between these data formats—holds for this revised
document.

Goals of This Document
We propose that increased supply chain transparency can reduce cybersecurity risks and
overall costs by:

● Enhancing the identification of vulnerable systems and the root cause of incidents
● Reducing unplanned and unproductive work
● Supporting more informed market differentiation and component selection
● Reducing duplication of effort by standardizing formats across multiple sectors
● Identifying suspicious or counterfeit software components

1 This working group operated in parallel and coordination with three other efforts in the NTIA multistakeholder
process on Software Component Transparency. More information about the process is available here:
https://www.ntia.doc.gov/SoftwareTransparency. The related documents are available at https://ntia.gov/SBOM.

https://www.ntia.doc.gov/SoftwareTransparency
https://ntia.gov/SBOM
https://ntia.gov/SBOM

Survey of Existing SBOM Formats and Standards - Version 2021

5

Collecting and communicating this information in such a manner can lower the cost, increase
the reliability of, and increase our ability to trust our digital infrastructure.

The initial goals of this working group were to:

● Investigate the options available today.
● Document workable and actionable machine-readable formats.
● Acknowledge that no single solution/format will be required (i.e., we will not “proclaim a

winner”).
● Determine how the solutions can work in harmony, since different formats were

designed to address the requirements of different constituencies (e.g., developers,
CFOs managing software entitlements), and mapping between well-documented formats
is technically feasible.

● Support international feedback and buy-in to solutions as supply-chain security and
software integrity is not just a U.S. problem, and participation in this process is global.

Three Key Formats
The working group identified three formats in widespread use: (1) Software Package Data
Exchange (SPDX®), an open source machine-readable format with origins in Linux Foundation
and recently approved as ISO/IEC standard; (2) CycloneDX (CDX), an open source machine-
readable format with origins in the OWASP community; and (3) Software Identification (SWID),
an ISO/IEC industry standard used by various commercial software publishers. Descriptions
and use cases for each format, as well as a mapping between them, are detailed below.

It is important to note that although these three formats contain overlapping information, they
have historically been used at different points in the software lifecycle, and are consumed by
different types of users.

SPDX, a product of the open source software development community, is geared for ease-of-
ingestion within a developer workflow and within corporations to support compliance and
software transparency for open source and proprietary code. The open source nature of the
format, as well as the availability of open source tooling to generate it, supports broad adoption
by a large and distributed population of commercial international organizations, as well as
developers who may not be associated with vendors. The accessibility of SPDX means that the
sole developer of an experimental library can generate an SBOM with minimal effort at no cost.
The ability to link artifacts to global reference systems via Common Platform Enumeration
(CPE), Package URL (purl), Software Heritage persistent ID (SWHID), as well as other package
build coordinates, enables flexibility to handle security use cases. The cost saving and ready
availability of open source tools is attractive to commercial organizations as well. SPDX is useful
in the “long tail” of upstream open source software componentry, for source and binary software
artifacts.

Survey of Existing SBOM Formats and Standards - Version 2021

6

CycloneDX is a lightweight open source standard with origins in the OWASP community. It
supports a wide range of development ecosystems, a comprehensive set of use cases, and
focuses on automation, ease of adoption, and progressive enhancement of SBOMs throughout
build pipelines. The specification is in widespread use among organizations with security use
cases and is equally capable of describing both open source and proprietary software. A large
and growing collection of community and officially supported open source tools are available,
and the project's website includes many examples for achieving various use cases. CycloneDX
natively supports multiple standards for component identity including coordinates, Package
URL, CPE, and SWID for both binary and source software artifacts.

SWID tags were designed with software inventory and entitlement management in mind. SWID
tags support the inventory of commercial and open source software that is installed on a device
through locating the SWID tag associated with the software. A developer can use freely
available guidance on the creation of SWID tags to configure their build pipeline to produce
SWID tags automatically during the software build and packaging process. With an orientation
around deployed software, SWID tags follow the binary artifact and are updated as the compiled
codebase changes. This lends itself to integration with automated scanning, and a host of risk-
management use cases and tooling.

This document and this working group acknowledge that all three formats can be used to
generate, exchange, and use SBOM data. While certain use cases may lend themselves to
particular formats, this working group does not endorse any format specifically, and believes
that each user should select that which meets their needs. This document offers an explicit
guide to translate between the three for the “minimum viable” SBOM models to enable a more
interoperable ecosystem.

Survey of Existing SBOM Formats and Standards - Version 2021

7

Lifecycle of an SBOM

How to Produce SBOMs
Information that goes into SBOMs can be best obtained from the tools and processes used in
each stage of the software lifecycle (See Figure 1, below). One may leverage existing tools and
processes to generate SBOMs. Such tools and processes include intellectual property review,
procurement review and license management workflow tools, software supply chain risk
management, code scanners, pre-processors, code generators, source code management
systems, binary code analysis tools, version control systems, compilers, build tools, continuous
integration systems, packagers, compliance test suites, package distribution repositories, and
app stores.

Figure 1: The Software lifecycle with multiple stages where underlying code might change, and
thus the SBOM would be updated to reflect the changes.

Survey of Existing SBOM Formats and Standards - Version 2021

8

Currently, not all off-the-shelf or open source software lifecycle tools have the capability to
generate SBOMs. Analysis of software may happen after initial generation. Suppliers should
consider enhancing or retrofitting existing tools and processes to generate and maintain
SBOMs.

SBOMs may be considered incomplete by some users for specific use cases. If the SBOMs are
incomplete, the consumer should reach out to the supplier to clarify in order to make informed
use of SBOMs based on the available data.

The NTIA multistakeholder community as part of the Framing Working group has defined a
baseline of SBOM data elements,2 which is closely related to the subsequent Executive Order-
mandated Minimum Elements document.3 The discussion in this document is based on these
references.

How to Deliver SBOMs
At the moment, there is no single set way to transmit SBOM downstream to the next user.4 In
open source products, the SBOM can be stored as metadata, with pointers to components. For
compiled software, SBOMs can be bundled together with the software product itself as a
compendium and stored with the installed software. The SBOM could also be made available in
portals controlled by the supplier, stored in a pre-agreed location or with some other third party.

Stakeholders mentioned the potential value in accessing data from older SBOMs, so that users
can understand the underlying components of software at a specific point in time. For example,
a customer may want to know if a cloud-based service was potentially vulnerable at a certain
point in the past as part of a forensic breach investigation. This document does not offer
guidance on how to preserve past SBOMs. To learn more about how suppliers can deliver
SBOMs, please read the Software Suppliers Playbook: SBOM Production and Provision.5

How to Update SBOMs
An SBOM should reflect the current state of a piece of software. If software or the software’s
underlying components are updated, then the list of underlying components should also be
updated accordingly to ensure that SBOM data itself is up-to-date. Except for the information
that is derived from the software artifact itself, other information in an SBOM can be declarative,
or asserted by the author of the SBOM data. For example, the download location of the
component names can be part of the SBOM.

Similarly, if the information known about the software changes, or an error was made in the
original SBOM, a supplier may update the SBOM without updating the underlying code.
Declared information may have to be corrected, changed, or added over time. Such changes

2 https://www.ntia.gov/files/ntia/publication s/ntia_sbom_framing_2nd_edition_20211021.pdf
3 https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
4 https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
5 https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf

Survey of Existing SBOM Formats and Standards - Version 2021

9

can be appended to ledger-based SBOMs. Corrections or additions may be made to an SBOM,
resulting in a new revised SBOM that should be auditable.

How to Consume SBOMs
For the most effective use of SBOM information, the data must be machine readable.
Consumption must incorporate machine-to-machine automated processes. Each of the use
cases discussed in the introduction (and further fleshed out in the Software Consumers
Playbook: SBOM Acquisition, Management, and Use6 document) can achieve maximum
effectiveness only by integrating into automated processes. It is also important that the format
can be translated into a human readable version.

Consumers may use SBOMs as input to their tools that support:

● asset management
● license and entitlement management
● intellectual property management
● regulatory and compliance management
● provisioning
● configuration management
● vulnerability management
● incident response
● software supply chain risk assessment and attestation

Usage of SBOMs for risk management may require additional risk data that may not be included
with SBOMs, e.g., vendor-supplied data acquired during a procurement process. To learn more
about how consumers can work with SBOMs, please read the Software Consumer Playbook.

6 https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf

https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf

Survey of Existing SBOM Formats and Standards - Version 2021

10

Overview of Key Formats

SPDX
The Software Package Data Exchange (SPDX®) specification is an ISO/IEC standard7 for
communicating software bill of materials information. It facilitates the description of components,
licenses, copyrights, and security information associated with software components in multiple
file formats. The project has created and continues to evolve a set of data exchange standards
that enables companies and organizations to share human-readable and machine-processable
software metadata to facilitate software supply chain processes.

Software development teams across the globe use the same open source components, but in
2010, there was little infrastructure available to facilitate collaboration or analysis, or to share
the results of analysis activities. As a result, many groups were performing the same work,
leading to duplicated efforts and redundant information. To save time, and improve data
accuracy, the SPDX project was formed to create a common metadata exchange format so that
information about software packages and related content could be collected and shared, and
tooling could be developed8 to help automate these tasks.

SPDX information can be associated with a particular software product, component or set of
components, an individual file, or even a snippet of code. The SPDX project focuses on creating
and extending a “language” to describe the data that can be exchanged as part of a software bill
of materials, and being able to express that language in multiple file formats (RDF/XML, XLSX,
tag-value, JSON, YAML & XML) so that information about software packages and related
content may be easily collected and shared with the goal of saving time and improving
accuracy.

The specification is a living document. As new use-cases are examined, it evolves. Care is
taken to provide backwards compatibility. Development progresses through collaboration
between technical, business, legal, and now security professionals from a range of
organizations to create a standard that addresses the needs of various participants in the
software supply chain.

Companies and organizations are widely using and reusing open source and other software
components. Accurate identification of the software from the executable to the source files that
make up that executable is key to understanding if there may be a security vulnerability in it.

Description
The SPDX specification9 describes the necessary sections and fields to produce a valid SPDX
document. It is important to note that not all of these sections are required. The creation

7 ISO/IEC 5962:2021 (https://www.iso.org/standard/81870.html)
8 https://spdx.dev/resources/tools/
9 https://spdx.github.io/spdx-spec/

https://www.iso.org/standard/81870.html
https://spdx.dev/resources/tools/
https://spdx.github.io/spdx-spec/

Survey of Existing SBOM Formats and Standards - Version 2021

11

information section is the only one that is mandatory. Then it is a matter of using the sections
(and subset of the fields in each section) that describe the software and metadata information
that the SPDX document creator is planning to share.

FIGURE 2: Overview of an SPDX document10

Each SPDX document can be composed from the following:

- Creation Information: One instance is required for each SPDX document produced. It
provides the necessary information for forward and backward compatibility for
processing tools (version numbers, license for data, authors, etc.).

- Package Information: A package in an SPDX document can be used to describe a
product, container, component, packaged upstream project sources, contents of a
tarball, etc. It is a way of grouping together items that share some common context. It is
not necessary to have a package wrapping a set of files.

- File Information: A file’s important metadata, including its name, checksum, licenses
and copyright, is summarized here.

- Snippet Information: Snippets can optionally be used when a file is known to have
some content that has been included from another original source. They are useful for
denoting when part of a file may have been originally copied from a different file.

- Other Licensing Information: The SPDX License List11 does not represent all licenses
that can be found in packages, files, and snippets, so this section provides a way to

10 This diagram has been reproduced from https://spdx.github.io/spdx-spec/composition-of-an-SPDX-document/
11 https://spdx.org/licenses

https://spdx.github.io/spdx-spec/composition-of-an-SPDX-document/
https://spdx.org/licenses

Survey of Existing SBOM Formats and Standards - Version 2021

12

summarize other license information that may be present in software being described,
such as custom or proprietary licenses.

- Relationships: There are many different ways SPDX documents, packages, files and
snippets can be related to each other; there are 43 relationships supported, with the
ability to extend if needed, to enable effective system description.

- Annotations: Annotations are usually created when someone reviews the SPDX
document and wants to pass on information from their review. However, if the SPDX
document author wants to store extra information that doesn’t fit into the other
categories, an annotation can be used.

Each document is capable of being represented by a full data model implementation and
identifier syntax. This permits exchange between data output formats (RDF/XML, tag-value,
XLSX), and formal validation of the correctness of the SPDX document.12 In the SPDX
specification’s version 2.2 release, the additional output formats of JSON, YAML, and XML have
been added, as well as support for the “known unknowns” as identified in the original SBOM
framing document. Further information on the data model underlying SPDX can be found in
Appendix III of the SPDX Specification13 and on the SPDX web site.14

Use Cases
● Describes system components and nuanced relationships between components
● High fidelity tracking of intellectual property (licensing, copyright) of software

components
● Software supply chain risk assessments and component verification
● Listing contents of a software distribution
● Tracking executables back to individual source files and source snippets
● Container contents inventory
● Associating Common Platform Enumerations (CPEs), Software Heritage persistent IDs

(SWHIDs), and Package URLs (purls) with specific packages to facilitate additional
security analysis

● Identifying provenance of lines of code embedded in files

Key Features
● Documented artifacts can be checked using the provided hash values
● Rich facilities for intellectual property and licensing information
● Flexible model able to scale from snippets and files up to packages, containers, and

even operating system distributions
● Ability to add mappings to other package reference systems and security systems
● Ability to logically partition and link documents associated with complex systems

12 https://tools.spdx.org/app/validate/
13 https://spdx.github.io/spdx-spec/appendix-III-RDF-data-model-implementation-and-identifier-syntax/
14 https://spdx.dev/

https://tools.spdx.org/app/validate/
https://spdx.github.io/spdx-spec/appendix-III-RDF-data-model-implementation-and-identifier-syntax/
https://spdx.dev/

Survey of Existing SBOM Formats and Standards - Version 2021

13

SPDX and SBOM
SPDX can capture SBOM data because they are able to represent all of the components found
in software development and deployment. SPDX is being used to represent distro .iso images,
containers, software packages, binary files, source files, patches, and even snippets of code
embedded in other files. SPDX provides a rich set of relationships to link the software elements
together within documents, as well as between SBOM documents. An SPDX SBOM document
is able to link out via External References to National Vulnerability Database and other
packaging systems metadata.

Future Directions
● When desired, information to indicate vulnerabilities known at the time of the SPDX

creation and also when/where/how these known vulnerabilities have been remediated in
an update or patch or have been determined as being not exploitable in the software
being delivered. This work is aligning with the emerging Vulnerability-Exploitability
eXchange working group directions.15

● Enhancing the representation of pedigree and provenance information to support chain
of custody discussions.

● Richer set of relationships and integrity checks between interactions.
● Identification of use cases currently not able to be represented by SPDX16 and adding

elements into the upcoming specification release to support these use cases.

CycloneDX
CycloneDX is a lightweight SBOM specification designed for use in software security contexts
and supply chain component analysis. It can communicate inventory of software components,
external services, and their relationships to one another. CycloneDX is an open source OWASP
standard.

The project was created in 2017 with a goal of creating a fully automatable, security-focused
SBOM standard. The core working group has produced immutable, backward compatible
releases every year through a risk-based standards process. CycloneDX incorporates existing
specifications including Package URL, CPE, SWID, and SPDX license IDs and expressions.
CycloneDX SBOMs can be represented as XML, JSON, and Protocol Buffers (protobuf).

The dynamic nature of open source components whose source code is readily available,
modifiable, and redistributable can be captured in CycloneDX. The specification can represent
component pedigree including ancestors, descendants, and variants that describe component
lineage from any viewpoint and the commits, patches, and diffs that make it unique.

15 https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
16 https://github.com/spdx/spdx-spec/issues

https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://github.com/spdx/spdx-spec/issues

Survey of Existing SBOM Formats and Standards - Version 2021

14

The CycloneDX project maintains a community supported list of all known open source and
proprietary tools17 that support or interoperate with the standard.

Description
The CycloneDX specification18 describes a prescriptive object model that creates consistency
across implementations. The specification can be validated using XML Schema and JSON
Schema, or by using the CycloneDX CLI19. Registered media types are provided for XML and
JSON allowing for automated delivery and consumption of supported formats.

FIGURE 3: CycloneDX Overview20

Each CycloneDX SBOM may contain:

- BOM Metadata: Contains information including the tools used to produce the SBOM, the
supplier, manufacturer, and the assembled software, component, firmware, or device
that the SBOM describes.

- Components: Describes the complete inventory of first-party and third-party software
components. This includes the type of component, its identity, license, copyright,
hashes, and complete pedigree and provenance, including any alterations made to
components. Components may be nested to form component assemblies, which may
have their own supplier information. A digital signature may optionally be applied to
components or component assemblies.

- Services: Describes external APIs that the software may call, which may include
endpoint URI’s, authentication requirements, and trust boundary traversals. The flow of
data between software and services can also be described including the data

17 https://cyclonedx.org/tool-center/
18 https://cyclonedx.org/docs/latest
19 https://github.com/CycloneDX/cyclonedx-cli
20 This diagram has been reproduced from https://cyclonedx.org/specification/overview/

https://cyclonedx.org/tool-center/
https://cyclonedx.org/docs/latest
https://github.com/CycloneDX/cyclonedx-cli
https://cyclonedx.org/specification/overview/

Survey of Existing SBOM Formats and Standards - Version 2021

15

classifications, and the flow direction of each type. A digital signature may optionally be
applied to services.

- Dependencies: Describes direct and transitive relationships. Components that depend
on other components can be represented, as well as components that depend on
services. Services that depend on other services can also be represented.

- Compositions: The completeness of inventory and relationships can be described using
compositions. The aggregate of each composition can be described as complete,
incomplete, incomplete first-party only, incomplete third-party only, or unknown. This
allows SBOM authors to describe how complete the SBOM is, or if there are
components in the SBOM where completeness is unknown.

- Extensions: Multiple extension points exist throughout the CycloneDX object model,
allowing fast prototyping of new capabilities and support for specialized and future use
cases.

Use Cases
● Description of inventory of software components and services
● Vulnerability analysis, remediation, and other security use cases
● Software supply chain risk assessments and attestations
● License compliance
● Pedigree and provenance including complete traceability of all modifications
● Integrity verification of signed components, component assemblies, and the SBOM
● Portable file-based formats useful for build-time creation and distribution, as well as a

highly efficient machine-to-machine binary format

Key Features
● Prescriptive object model is simple to learn and adopt
● Open source standard - permissive, commercial friendly license
● Highly automatible with deep integration across many development ecosystems
● Supports multiple standards for component identity including Package URL, CPE, and

SWID (tag id or complete SWID documents)
● Risk-based approach to standards development that expedites delivery of core

functionality to the community
● Specification is extensible allowing rapid prototyping of new capabilities to meet

organizational or industry-specific requirements

CycloneDX and SBOM
CycloneDX is a full-stack SBOM standard that can represent many different types of software
applications, components, services, firmware, and devices. The specification is currently used
across a wide-variety of industries to describe software packages, libraries, frameworks,
applications, and container images. The project supports most major development ecosystems
and provides implementations for software factories, such as GitHub actions, that further
accelerate the ability for organizations to fully automate SBOM creation.

Survey of Existing SBOM Formats and Standards - Version 2021

16

Future Directions
● Incorporate feedback from the community and the CycloneDX Industry Working Group

to help guide the future direction of the standard
● Multiple extensions are currently being developed including auditing, formulation, and

enhancements to the existing vulnerability extension21
● Continuous improvement of the core specification with yearly releases. Progress can be

tracked using GitHub milestones22.

SWID

Description
Software Identification (SWID) Tags were designed to provide a transparent way for
organizations to track the software installed on their managed devices. It was defined by ISO in
2012 and updated as ISO/IEC 19770-2:201523 in 2015.24 SWID Tag files contain descriptive
information about a specific release of a software product.

The SWID standard defines a lifecycle: a SWID Tag is added to an endpoint as part of the
software product’s installation process, and deleted by the product’s uninstall process. In this
lifecycle, the presence of a given SWID Tag corresponds directly to the presence of the
software product that the Tag describes. Multiple standards bodies, including the Trusted
Computing Group (TCG) and the Internet Engineering Task Force (IETF), use SWID Tags in
their standards.

To capture the lifecycle of a software component, the SWID specification defines four types of
SWID tags: primary, patch, corpus, and supplemental. (See Figure 3)

1. Primary Tag: A SWID Tag that identifies and describes a software product is installed
on a computing device.

2. Patch Tag: A SWID Tag that identifies and describes an installed patch that has made
incremental changes to a software product installed on a computing device.

3. Corpus Tag: A SWID Tag that identifies and describes an installable software product in
its pre-installation state. A corpus tag can be used to represent metadata about an
installation package or installer for a software product, a software update, or a patch.

4. Supplemental Tag: A SWID Tag that allows additional information to be associated with
any referenced SWID tag. This helps to ensure that SWID Primary and Patch Tags
provided by a software provider are not modified by software management tools, while
allowing these tools to provide their own software metadata.

21 https://cyclonedx.org/ext/vulnerability/
22 https://github.com/CycloneDX/specification/milestones
23 https://webstore.ansi.org/Standards/ISO/ISOIEC197702015
24 While ISO documents sit behind a paywall, anyone can freely use ISO-standardized specifications. See NIST
Internal Report (NISTIR) 8060: Guidelines for the Creation of Interoperable Software Identification (SWID) Tags for a
detailed explanation and guide of SWID tags.

https://cyclonedx.org/ext/vulnerability/
https://github.com/CycloneDX/specification/milestones
https://webstore.ansi.org/Standards/ISO/ISOIEC197702015
https://doi.org/10.6028/NIST.IR.8060
https://doi.org/10.6028/NIST.IR.8060

Survey of Existing SBOM Formats and Standards - Version 2021

17

Corpus, primary, and patch tags have similar functions in that they describe the existence
and/or presence of different types of software (e.g., software installers, software installations,
software patches), and, potentially, different states of software products. In contrast,
supplemental tags furnish additional information not contained in corpus, primary, or patch tags.

FIGURE 4: The Lifecycle of software on an endpoint documented by SWID tags. Souce: NISTIR
8060

The figure above illustrates the steps in the software lifecycle and the relationships among those
lifecycle events supported by the four types of SWID tags. Supplemental tags can be associated
with any other tag to provide additional metadata that might be of use. Taken as a body, SWID
tags can support a wide range of functions, including software discovery, configuration
management, and vulnerability management.

The following is an example of a primary SWID tag for a piece of compiled software by the
ACME Corporation called Roadrunner Detector.25 The tag defines the product name, version,
and other details, as well as a hash for the binary.

<SoftwareIdentity
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xmlns:sha256="http://www.w3.org/2001/04/xmlenc#sha256"
 name="ACME Roadrunner Detector 2013 Coyote Edition SP1"
 tagId="com.acme.rrd2013-ce-sp1-v4-1-5-0"
 version="4.1.5">
 <Entity name="The ACME Corporation" regid="acme.com"
 role="tagCreator softwareCreator"/>
 <Link rel="license" href="www.gnu.org/licenses/gpl.txt"/>
 <Meta product="Roadrunner Detector" colloquialVersion="2013"
 edition="coyote" revision="sp1"/>
 <Payload>
 <File name="rrdetector.exe" size="532712"

25 https://csrc.nist.gov/publications/detail/nist ir/8060/final

https://csrc.nist.gov/publications/detail/nistir/8060/final

Survey of Existing SBOM Formats and Standards - Version 2021

18

SHA256:hash="a314fc2dc663ae7a6b6bc6787594057396e6b3f569cd50fd5ddb
4d1bbafd2b6a"/>

 </Payload>
</SoftwareIdentity>

Use Cases
● SBOM for software components
● Continuous monitoring of installed software inventory
● Identifying vulnerable software on endpoints
● Ensuring that installed software is properly patched
● Preventing installation of unauthorized or corrupted software
● Preventing the execution of corrupted software
● Managing software entitlements

Key Features
● Provides stable software identifiers created at build time
● Standardizes software information that can be exchanged between software providers

and consumers as part of the software installation process
● Enables the correlation of information related to software including related patches or

updates, configuration settings, security policies, and vulnerability and threat advisories

SWID Tags and SBOM
SWID tags can be used as an SBOM, since they provide identifying information for a software
component, a listing of files and cryptographic hashes for the constituent artifacts that make up
a software component, and provenance information about the SBOM (tag) creator and software
component creator. Tags can explicitly link to other tags, enabling a representation of a
dependency tree.

The operational model for generating SWID tags allows the tags to be generated as part of the
build and packaging process; this allows a SWID tag-based SBOM to be produced
automatically when the related software component is packaged.

Future Directions
While SWID tags are an XML format, a more lightweight representation called CoSWID, a
Concise Binary Object Representation (CBOR)-based binary representation of SWID tag
information, is currently being standardized in the IETF to support the constrained IoT use case.
More information on CoSWID can be found below.

Translation and Harmonization Guidance
Experts in SPDX, SWID, and CycloneDX engaged in a mapping exercise between the data
fields in the three formats. Not all the fields are evenly mapped to each other, as the formats
were originally designed for different purposes. However, the Working Group found the potential

Survey of Existing SBOM Formats and Standards - Version 2021

19

for decent interoperability, as enough of the fields correspond with each other. This is
particularly true for those fields related to the basic component data discussed in the Framing
Group’s Document26.

Attribute SPDX CycloneDX SWID

Author
Name

Creator metadata/authors/author <Entity> @role
(tagCreator), @name

Timestamp Created metadata/timestamp <Meta>

Supplier
Name

PackageSupplier Supplier
publisher

<Entity> @role
(softwareCreator/publis
her), @name

Component
Name

PackageName name <softwareIdentity>
@name

Version
String

PackageVersion version <softwareIdentity>
@version

Component
Hash

PackageChecksum
Or VerificationCode

Hash
“alg”

<Payload>/../<File>
@[hash-algorithm]:hash

Unique
Identifier

DocumentNamespace
combined with SPDXID

bom/serialNumber
component/bom-ref

<softwareIdentity>
@tagID

Relationship Relationship:
DESCRIBES; CONTAINS

(Inherent in nested
assembly/subassembly
and/or dependency
graphs)

<Link> @rel, @href

Table 1: A mapping between SPDX, CycloneDX, and SWID to capture the core fields discussed
in the “baseline component information” SBOM.

Below, we lay out those basic data fields that are similar to what is described as the “Baseline
Component Information” as defined in the Framing Group’s document. To illustrate this, we offer
an example that captures many of the features of basic SBOM in SPDX, CycloneDX, and
SWID.

Example Scenario
The example, illustrated in Figure 5, focuses on an imaginary piece of software called
“Application” by an organization named Acme and demonstrates how a Software Bill of
Materials (SBOM) can look in a fairly lightweight fashion. Acme’s Application includes exactly
two third-party components: Bob’s Browser and Bingo Buffer. Bob’s Browser, in turn, depends
on third-party components. We know that the Browser includes Carol’s CompressionEng, but
we don’t know if the Browser includes other components as well. Carol’s CompressionEng, in

26 https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf

Survey of Existing SBOM Formats and Standards - Version 2021

20

turn, is written from scratch, and we know that it contains no third party components.
Unfortunately, we don’t know if Acme’s Application’s other dependency, Bingo Buffer, contains
any third-party dependencies.

Figure 5: A toy example of software to illustrate how an SBOM can look.27

SPDX (tag-value28)
SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
DocumentNamespace: http://www.spdx.org/spdxdocs/8f141b09-1138-4fc5-aefb-fc10d9ac1eed
DocumentName: SBOM toy example
SPDXID: SPDXRef-DOCUMENT
Creator: Organization: NTIA Standards and Formats Workgroup
Created: 2021-08-31T11:29:46Z
Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Application-v1.1

PackageName: Application
SPDXID: SPDXRef-Application-v1.1
PackageVersion: 1.1
PackageSupplier: Organization: Acme
PackageDownloadLocation: NOASSERTION
FilesAnalyzed: false
PackageChecksum: SHA1: 75068c26abbed3ad3980685bae21d7202d288317
PackageLicenseConcluded: NOASSERTION
PackageLicenseDeclared: NOASSERTION
PackageCopyrightText: NOASSERTION
Relationship: SPDXRef-Application-v1.1 CONTAINS SPDXRef-Browser-v2.1
Relationship: SPDXRef-Application-v1.1 CONTAINS SPDXRef-Buffer-v2.2

PackageName: Browser

27 More details on this example can be found in
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
28 This file format was selected for human readability in this document, submitting the example to
https://tools.spdx.org/app/convert/ can convert it to XML, JSON, YAML, RDF/XML as well.

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://tools.spdx.org/app/convert/

Survey of Existing SBOM Formats and Standards - Version 2021

21

SPDXID: SPDXRef-Browser-v2.1
PackageVersion: 2.1
PackageSupplier: Person: Bob
PackageDownloadLocation: NOASSERTION
FilesAnalyzed: false
PackageChecksum: SHA1: 94568c26abbed3ad3980685deaf1d7202d268314
PackageLicenseConcluded: Apache-2.0
PackageLicenseDeclared: NOASSERTION
PackageCopyrightText: Copyright 2019 Bob
Relationship: SPDXRef-Browser-v2.1 CONTAINS SPDXRef-CompressionEng-v3.1
Relationship: SPDXRef-Browser-v2.1 CONTAINS NOASSERTION

PackageName: Buffer
SPDXID: SPDXRef-Buffer-v2.2
PackageVersion: 2.2
PackageSupplier: Organization: Bingo
PackageDownloadLocation: NOASSERTION
FilesAnalyzed: false
PackageChecksum: SHA1: 84568c26aabad3ad3980685beef1d7202d26831d
PackageLicenseConcluded: NOASSERTION
PackageLicenseDeclared: GPL-3.0-or-later
PackageCopyrightText: Copyright 2018 Bingo Inc.
Relationship: SPDXRef-Buffer-v2.2 CONTAINS NOASSERTION

PackageName: CompressionEng
SPDXID: SPDXRef-CompressionEng-v3.1
PackageVersion: 3.1
PackageSupplier: Person: Carol
PackageDownloadLocation: NOASSERTION
FilesAnalyzed: false
PackageChecksum: SHA1: 63568c26aebad3ad398bb85ce1f1d7202d27731a
PackageLicenseConcluded: NOASSERTION
PackageLicenseDeclared: NOASSERTION
PackageCopyrightText: NOASSERTION
Relationship: SPDXRef-CompressionEng-v3.1 CONTAINS NONE

CycloneDX (XML)

<?xml version="1.0" encoding="utf-8"?>
<bom xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b71" version="1"
 xmlns="http://cyclonedx.org/schema/bom/1.3">
 <metadata>
 <authors>
 <author>
 <name>Acme</name>
 </author>
 </authors>
 <component type="application">
 <name>Application</name>
 <version>1.1</version>

Survey of Existing SBOM Formats and Standards - Version 2021

22

 <hashes>
 <hash alg="SHA-1">75068c26abbed3ad3980685bae21d7202d288317</hash>
 </hashes>
 <cpe>cpe:2.3:a:acme:application:1.1:*:*:*:*:*:*:*</cpe>
 <externalReferences />
 <components />
 </component>
 <manufacture>
 <name>Acme</name>
 </manufacture>
 <supplier>
 <name>Acme</name>
 </supplier>
 </metadata>
 <components>
 <component type="library" bom-ref="pkg:maven/org.bob/browser@2.1">
 <publisher>Bob</publisher>
 <group>org.bob</group>
 <name>browser</name>
 <version>2.1</version>
 <hashes>
 <hash alg="SHA-1">94568c26abbed3ad3980685deaf1d7202d268314</hash>
 </hashes>
 <cpe>cpe:2.3:a:bob:browser:2.1:*:*:*:*:*:*:*</cpe>
 <purl>pkg:maven/org.bob/browser@2.1</purl>
 </component>
 <component type="library" bom-ref="pkg:maven/org.carol/CompressionEng@3.1">
 <publisher>Carol</publisher>
 <group>org.carol</group>
 <name>CompressionEng</name>
 <version>3.1</version>
 <hashes>
 <hash alg="SHA-1">63568c26aebad3ad398bb85ce1f1d7202d27731a</hash>
 </hashes>
 <cpe>cpe:2.3:a:carol:compression_eng:3.1:*:*:*:*:*:*:*</cpe>
 <purl>pkg:maven/org.carol/CompressionEng@3.1</purl>
 </component>
 <component type="library" bom-ref="pkg:maven/org.bingo/buffer@2.2">
 <publisher>Bingo</publisher>
 <group>org.bingo</group>
 <name>Buffer</name>
 <version>2.2</version>
 <hashes>
 <hash alg="SHA-1">84568c26aabad3ad3980685beef1d7202d26831d</hash>
 </hashes>
 <cpe>cpe:2.3:a:bingo:buffer:2.2:*:*:*:*:*:*:*</cpe>
 <purl>pkg:maven/org.bingo/buffer@2.2</purl>
 </component>
 </components>
 <dependencies>
 <dependency ref="pkg:maven/org.bob/browser@2.1">
 <dependency ref="pkg:maven/org.carol/CompressionEng@3.1" />
 </dependency>
 <dependency ref="pkg:maven/org.bingo/buffer@2.2" />
 </dependencies>

Survey of Existing SBOM Formats and Standards - Version 2021

23

 <compositions>
 <composition>
 <aggregate>complete</aggregate>
 <assemblies>
 <assembly ref="pkg:maven/org.carol/CompressionEng@3.1"/>
 </assemblies>
 <dependencies>
 <dependency ref="pkg:maven/org.carol/CompressionEng@3.1"/>
 </dependencies>
 </composition>
 <composition>
 <aggregate>unknown</aggregate>
 <assemblies>
 <assembly ref="pkg:maven/org.bingo/buffer@2.2"/>
 <assembly ref="pkg:maven/org.bob/browser@2.1"/>
 </assemblies>
 </composition>
 </compositions>
</bom>

SWID (XML)
<SoftwareIdentity
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xmlns:sha512="http://www.w3.org/2001/04/xmlenc#sha512"
 name="application"
 tagId="acme/application@1.1"
 version="1.1">
 <Entity name="acme" role="tagCreator softwareCreator" />
 <Link href="swid:bob/browser@2.1" rel="component" />
 <Link href="swid:bingo/buffer@2.2" rel="component" />
 <Payload >
 <File name="acme-application-1.1.exe"

sha512:hash="BC55DEF84538898754536AE47CC907387B8F61D9ACD7D3FB8B8A624199682C8FBE
6D1631088AE6A322CDDC4252D3564655CB234D3818962B0B75C35504D55689" />

 </Payload>
</SoftwareIdentity>

<SoftwareIdentity
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xmlns:sha512="http://www.w3.org/2001/04/xmlenc#sha512"
 name="browser"
 tagId="bob/browser@2.1"
 version="2.1">
 <Entity name="bob" role="tagCreator softwareCreator" />
 <Link href="swid:carol/compressionEng@2.2" rel="component" />
 <Payload >
 <File name="bob-browser-2.1.exe"

sha512:hash="FF4893471E763B94165CC277A9FB01D7ED66256FDDD6467D91E35AFF8F445C6312
832FD97DE1FD517606019BDC5F46E9E4E4814601E1FCB1010E90C2EBE54820" />

 </Payload>
</SoftwareIdentity>

Survey of Existing SBOM Formats and Standards - Version 2021

24

<SoftwareIdentity
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xmlns:sha512="http://www.w3.org/2001/04/xmlenc#sha512"
 name="buffer"
 tagId="bingo/buffer@2.2"
 version="2.2">
 <Entity name="bingo" role="tagCreator softwareCreator" />
 <Payload >
 <File name="bingo-buffer-2.2.lib"

sha512:hash="AEE705CEAFDBA5EE54462443E41A447FDA69BEDCB57FC4C284D41AD67C7499A8F1
0C3B7D504A118986A3DF29564B3BD64B783C3B18BFA0F2AA4C779477A9D0D8" />

 </Payload>
</SoftwareIdentity>

<SoftwareIdentity
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xmlns:sha512="http://www.w3.org/2001/04/xmlenc#sha512"
 name="compressionEng"
 tagId="carol/compressionEng@3.1"
 version="3.1">
 <Entity name="carol" role="tagCreator softwareCreator" />
 <Payload >
 <File name="carol-compressionEng-3.1.lib"

sha512:hash="BEB0E94E089B34DADA04A53A38AE268672CA69ABB34C79E14B446D0DD5F55BE034
FC9F9D7DDF0655CDCDAB878604625805648FADA6E897541F483B2E92AE424C" />

 </Payload>
</SoftwareIdentity>

Survey of Existing SBOM Formats and Standards - Version 2021

25

Software Identity Formats
When the NTIA working group started the discussion of software bill of materials, the following
formats were also suggested to be considered for identifying software. The group worked with
creators of these projects to identify the key elements, and the summaries are captured below,
along with links for further information.

Concise SWID Tag (CoSWID)
Description
The Concise SWID (CoSWID) tag specification29 is an alternate format for representing a SWID
tag using the Concise Binary Object Representation (CBOR). A SWID tag, expressed in XML,
can be fairly large. The size of a SWID tag can be larger than acceptable for use in constrained
devices use cases (e.g., IoT). While containing the same information as a SWID tag, CoSWID
tags reduce the size of a SWID by a significant amount. This size reduction is supported by
using integer labels in CBOR in place of human-readable strings for data elements and
commonly used values.

Use Cases
As an alternate representation of a SWID tag, CoSWID shares the same use cases as a SWID
tag. Due to the reduced size, a CoSWID tag better supports implementation of these use cases
for IoT and other constrained devices and networks.

Key Features
A CoSWID shares the same features of a SWID tag. This format reduces the footprint of a
SWID tag, while expressing the same information. The following is an example of a CoSWID
tag, in hex-based binary:

bf0f65656e2d5553207820636f6d2e61636d652e727264323031332d63652d7370312d76342d3
12d352d300cc2410101783041434d4520526f616472756e6e6572204465746563746f72203230
313320436f796f74652045646974696f6e205350310d65342e312e350e2002bf181f745468652
041434d4520436f72706f726174696f6e18206861636d652e636f6d18219f0120ffff04bf1826
7823687474703a2f2f7777772e676e752e6f72672f6c6963656e7365732f67706c2e747874182
8676c6963656e7365ff05bf182d6432303133182f66636f796f7465183473526f616472756e6e
6572204465746563746f72183663737031ff06bf11bf18186e72726465746563746f722e65786
5141a200820e8079f015820a314fc2dc663ae7a6b6bc6787594057396e6b3f569cd50fd5ddb4d
1bbafd2b6affffffff

The CoSWID in CBOR is 317 bytes in size, while the SWID tag in XML is 795 bytes in size. This
represents a 60.1% reduction in size, while expressing the same information in both tags.

29 The CoSWID format is described by https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/. This IETF draft is
nearing publication as an IETF RFC.

https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/

Survey of Existing SBOM Formats and Standards - Version 2021

26

Common Platform Enumeration (CPE)
Description
A related data format is the Common Platform Enumeration (CPE).30 This format is “a
standardized method of describing and identifying classes of applications, operating systems,
and hardware devices present among an enterprise’s computing assets.” The CPE is used in
various situations such as the National Vulnerability Database (NVD). CPE enables
identification of specific applications, with or without version numbers, but does not by itself
identify subcomponents.

Use Cases
CPEs are useful because they facilitate component to vulnerability matching via the NVD. CPE
information contained within SBOMs can be queried against NVD search tools to discover
potential related vulnerabilities.31

Key Features
A CPE identifier is composed of 11 elements along with a prefix of the cpe version (the latest
cpe specification being cpe:2.3):

Element Definition

part Asset class: “a” for applications, “o” for operating systems, “h” for hardware
devices

vendor Organization that created or made the product

product Commonly recognized name of product

version Version of product

update Update, service pack, or point release of the product

edition Edition-related terms of the product (Depreciated in cpe:2.3 but kept for
backwards compatibility)

sw_edition Product tailoring for market or class of end users

target_sw Computing environment product operates

target_hw Instruction set architecture (x86) on which product operates

language Language of product interface

other General descriptive or identifying information that is vendor-product specific

30 CPE is defined in https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
31 NVD CPE search tool https://nvd.nist.gov/products/cpe/search

https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
https://nvd.nist.gov/products/cpe/search

Survey of Existing SBOM Formats and Standards - Version 2021

27

Elements put together to form a well-formed CPE identifier:

wfn:[part="o",vendor="microsoft",product="windows_vista",version="6\.0",
update="sp1",edition=NA,language=NA,sw_edition="home_premium",
target_sw=NA,target_hw="x64",other=NA]

Examples:

cpe:2.3:o:microsoft:windows_vista:6.0:sp1:-:-:home_premium:-:x64:-
cpe:2.3:o:linux:linux_kernel:2.6.35:rc3:*:*:*:*:*:*
cpe:2.3:a:google:chrome:5.0.375.82:*:*:*:*:*:*:*
cpe:2.3:o:cisco:ios:12.2(12)da4:*:*:*:*:*:*:*

Package-URL (purl)
Description
A package URL (purl) is an attempt to standardize existing approaches to reliably identify and
locate software packages. A purl is a URL string used to identify and locate a software package
in a mostly universal and uniform way across programming languages, package managers,
packaging conventions, tools, APIs, and databases. Such a package URL is useful to reliably
reference the same software package using a simple and expressive syntax and conventions
based on familiar URLs.

A purl is a URL composed of seven components:

scheme:type/namespace/name@version?qualifiers#subpath

Components are separated by a specific character for unambiguous parsing.

Component Definition Usage

scheme This is the URL scheme with the constant value of "pkg". One
of the primary reasons for this single scheme is to facilitate
the future official registration of the "pkg" scheme for package
URLs.

Required

type The package "type" or package "protocol" such as maven,
npm, nuget, gem, pypi, etc.

Required

namespace Some name prefix such as a Maven groupid, a Docker image
owner, a GitHub user or organization.

Optional and
type-specific

name The name of the package. Required

version The version of the package. Optional

Survey of Existing SBOM Formats and Standards - Version 2021

28

qualifiers Extra qualifying data for a package such as an OS,
architecture, a distro, etc.

Optional and
type-specific

subpath Extra subpath within a package, relative to the package root. Optional

Components are designed such that they can form a hierarchy, from the most significant
component on the left, to the least significant components on the right.

A purl must NOT contain a URL Authority; i.e., there is no support for username, password, host
and port components. A namespace segment may sometimes look like a host, but its
interpretation is specific to a type.

Examples32
pkg:deb/debian/curl@7.50.3-1?arch=i386&distro=jessie
pkg:docker/gcr.io/customer/dockerimage@sha256:244fd47e07d1004f0aed9c
pkg:gem/ruby-advisory-db-check@0.12.4
pkg:golang/google.golang.org/genproto#googleapis/api/annotations
pkg:maven/org.apache.xmlgraphics/batik-anim@1.9.1?packaging=sources

Linkage
SPDX 2.2 recognizes PURLs as valid External References <type>.33
SWID: A PURL can be provided in a SWID tag using the “link” element.
CycloneDX: All versions of CycloneDX natively support PURL as part of a component’s identity.

SoftWare Heritage persistent IDentifiers (SWHID)
Description
Software Heritage34 is a nonprofit initiative actively supported by a large number of
organizations35—software, systems and tool vendors, IT users, academic and governmental
institutions. It is building a universal archive of software source code, as a common
infrastructure catering to a variety of use cases from industry to science and culture.

Use Cases
One of the use cases specifically listed on the SoftWare Heritage mission statement is source
code tracking for industry36: “Because industry cannot afford to lose track of any part of its
source code, we track software origin, history, and evolution. Software Heritage will provide
unique software identifiers, intrinsically bound to software components, ensuring
persistent traceability across future development and organizational changes.” These intrinsic

32 Information was extracted from: https://github.com/package-url/purl-spec
33 https://spdx.github.io/spdx-spec/3-package-information/#321-external-reference
34 https://cacm.acm.org/magazines/2018/10/231366-building-the-universal-archive-of-source-code/fulltext
35 https://www.softwareheritage.org/support/testimonials/
36 https://www.softwareheritage.org/mission/industry/

https://github.com/package-url/purl-spec
https://spdx.github.io/spdx-spec/3-package-information/#321-external-reference
https://cacm.acm.org/magazines/2018/10/231366-building-the-universal-archive-of-source-code/fulltext
https://www.softwareheritage.org/support/testimonials/
https://www.softwareheritage.org/mission/industry/

Survey of Existing SBOM Formats and Standards - Version 2021

29

identifiers are based on cryptographic signatures, have a precise formal definition37, and are
already available for the more than 10 billions of artefacts stored in the Software Heritage
archive38. They are an essential building block for ensuring integrity of a source code base,
and are currently being used by some major industry players to implement a part of their SBOM
workflow, related to source code distribution obligations, as well as from the Wikidata
community39.

Linkage
SPDX 2.2: formally recognize SWH IDs as valid External References <type>40.

37 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html#persistent-identifiers
38 https://archive.softwareheritage.org
39 https://www.wikidata.org/wiki/Property:P6138
40 https://spdx.github.io/spdx-spec/3-package-information/#321-external-reference

https://spdx.github.io/spdx-spec/3-package-information/#321-external-reference
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html#persistent-identifiers
https://archive.softwareheritage.org/
https://www.wikidata.org/wiki/Property:P6138
https://spdx.github.io/spdx-spec/3-package-information/#321-external-reference

Survey of Existing SBOM Formats and Standards - Version 2021

30

Changes
Significant changes between this and the previous edition include:

● Moved CycloneDX from being a related format to a main one with its own section
● Added section on Identity formats and updated with results of latest survey
● Updated overview of the lifecycle of an SBOM
● Added Timestamp to Baseline Attributes (aligning with Framing Document)
● Expanded harmonization and translation guidance between the three formats
● Removed the “Related Formats” section
● Updated diagrams, figures, and tables to align with Framing Document
● Made various editorial improvements and clarifications

About the Authors of This Document
This document was drafted by an open working group convened by the National
Telecommunications and Information Administration in a multistakeholder process, including the
following individuals and organizations: Tom Alrich (Tom Alrich LLC), Chris Clark (Synopsys),
Patrick Dwyer (OWASP), Robin Gandhi (University of Nebraska at Omaha), Adam
Weinrich(Checkmarx), Christopher Gates (Velentium), JC Herz (Ion Channel), Derek
Kruszewski (aDolus), Art Manion (CERT Coordination Center), Bob Martin (MITRE), Chandan
Nandakumaraiah (Juniper Networks), Brendan O’Connor (GitHub), Gary O’Neall (SPDX),
Duncan Sparrell (sFractal), Steve Springett (OWASP), Kate Stewart (Linux Foundation), Tim
Walsh (Mayo), David Waltermire (NIST), Steve Winslow (SPDX). Others participated, but do not
wish to be named.

	Background & Problem Statement
	Goals of This Document
	Three Key Formats

	Lifecycle of an SBOM
	How to Produce SBOMs
	How to Deliver SBOMs
	How to Update SBOMs
	How to Consume SBOMs

	Overview of Key Formats
	SPDX
	Description
	Use Cases
	Key Features
	SPDX and SBOM
	Future Directions

	CycloneDX
	Description
	Use Cases
	Key Features
	CycloneDX and SBOM
	Future Directions

	SWID
	Description
	Use Cases
	Key Features
	SWID Tags and SBOM
	Future Directions

	Translation and Harmonization Guidance
	Example Scenario
	SPDX (tag-value27F)
	CycloneDX (XML)
	SWID (XML)

	Software Identity Formats
	Concise SWID Tag (CoSWID)
	Common Platform Enumeration (CPE)
	Package-URL (purl)
	SoftWare Heritage persistent IDentifiers (SWHID)

	Changes
	About the Authors of This Document

